• Title/Summary/Keyword: k-retract

Search Result 44, Processing Time 0.022 seconds

QUASIRETRACT TOPOLOGICAL SEMIGROUPS

  • Jeong, Won Kyun
    • Korean Journal of Mathematics
    • /
    • v.7 no.1
    • /
    • pp.111-116
    • /
    • 1999
  • In this paper, we introduce the concepts of quasi retract ideals and quasi retract topological semigroups which are weaker than those of retract ideals and retract topological semigroups, respectively. We prove that every $n$-th power ideal of a commutative power cancellative power ideal topological semigroup is a quasiretract ideal.

  • PDF

REMARKS ON SIMPLY k-CONNECTIVITY AND k-DEFORMATION RETRACT IN DIGITAL TOPOLOGY

  • Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.36 no.3
    • /
    • pp.519-530
    • /
    • 2014
  • To study a deformation of a digital space from the viewpoint of digital homotopy theory, we have often used the notions of a weak k-deformation retract [20] and a strong k-deformation retract [10, 12, 13]. Thus the papers [10, 12, 13, 16] firstly developed the notion of a strong k-deformation retract which can play an important role in studying a homotopic thinning of a digital space. Besides, the paper [3] deals with a k-deformation retract and its homotopic property related to a digital fundamental group. Thus, as a survey article, comparing among a k-deformation retract in [3], a strong k-deformation retract in [10, 12, 13], a weak deformation k-retract in [20] and a digital k-homotopy equivalence [5, 24], we observe some relationships among them from the viewpoint of digital homotopy theory. Furthermore, the present paper deals with some parts of the preprint [10] which were not published in a journal (see Proposition 3.1). Finally, the present paper corrects Boxer's paper [3] as follows: even though the paper [3] referred to the notion of a digital homotopy equivalence (or a same k-homotopy type) which is a special kind of a k-deformation retract, we need to point out that the notion was already developed in [5] instead of [3] and further corrects the proof of Theorem 4.5 of Boxer's paper [3] (see the proof of Theorem 4.1 in the present paper). While the paper [4] refers some properties of a deck transformation group (or an automorphism group) of digital covering space without any citation, the study was early done by Han in his paper (see the paper [14]).

INTUITIONISTIC FUZZY RETRACTS

  • Hanafy, I.M.;Mahmoud, F.S.;Khalaf, M.M.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.40-45
    • /
    • 2005
  • The concept of a intuitionistic fuzzy topology (IFT) was introduced by Coker 1997. The concept of a fuzzy retract was introduced by Rodabaugh in 1981. The aim of this paper is to introduce a new concepts of fuzzy continuity and fuzzy retracts in an intuitionistic fuzzy topological spaces and establish some of their properties. Also, the relations between these new concepts are discussed.

STRONG k-DEFORMATION RETRACT AND ITS APPLICATIONS

  • Han, Sang-Eon
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1479-1503
    • /
    • 2007
  • In this paper, we study a strong k-deformation retract derived from a relative k-homotopy and investigate its properties in relation to both a k-homotopic thinning and the k-fundamental group. Moreover, we show that the k-fundamental group of a wedge product of closed k-curves not k-contractible is a free group by the use of some properties of both a strong k-deformation retract and a digital covering. Finally, we write an algorithm for calculating the k-fundamental group of a dosed k-curve by the use of a k-homotopic thinning.

Fatigue Analysis for Locking Device in Landing Gear Retract Actuator (착륙장치 작동기 내부 잠금장치 피로해석)

  • Lee, Jeong-Sun;Kang, Shin-Hyun;Jang, Woo-Chul;Lee, Seung-Gyu;Oh, Seong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.91-96
    • /
    • 2012
  • The retract actuator makes the landing gear retract or extend during take-off and landing of an aircraft. To prevent folding of landing gear that has remained in the extended state because of an unexpected external disturbance, an internal locking device is applied to the retract actuator. The locking device is restrained with another internal component by oil pressure supplied to the retract actuator, and this restraint makes the locking of the actuator possible. Because locking and unlocking are repeated during retraction and extension of the landing gear, the locking device takes repeated identical loads, and the possibility of fatigue failure exists. In this study, the process and results of fatigue analysis for the locking device are presented, and the appropriateness of the analysis result is verified using a fatigue test.

KD-(k0, k1)-HOMOTOPY EQUIVALENCE AND ITS APPLICATIONS

  • Han, Sang-Eon
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.1031-1054
    • /
    • 2010
  • Let $\mathbb{Z}^n$ be the Cartesian product of the set of integers $\mathbb{Z}$ and let ($\mathbb{Z}$, T) and ($\mathbb{Z}^n$, $T^n$) be the Khalimsky line topology on $\mathbb{Z}$ and the Khalimsky product topology on $\mathbb{Z}^n$, respectively. Then for a set $X\;{\subset}\;\mathbb{Z}^n$, consider the subspace (X, $T^n_X$) induced from ($\mathbb{Z}^n$, $T^n$). Considering a k-adjacency on (X, $T^n_X$), we call it a (computer topological) space with k-adjacency and use the notation (X, k, $T^n_X$) := $X_{n,k}$. In this paper we introduce the notions of KD-($k_0$, $k_1$)-homotopy equivalence and KD-k-deformation retract and investigate a classification of (computer topological) spaces $X_{n,k}$ in terms of a KD-($k_0$, $k_1$)-homotopy equivalence.

CONVERGENCE OF APPROXIMATING FIXED POINTS FOR MULTIVALUED NONSELF-MAPPINGS IN BANACH SPACES

  • Jung, Jong Soo
    • Korean Journal of Mathematics
    • /
    • v.16 no.2
    • /
    • pp.215-231
    • /
    • 2008
  • Let E be a uniformly convex Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm, C a nonempty closed convex subset of E, and $T:C{\rightarrow}{\mathcal{K}}(E)$ a multivalued nonself-mapping such that $P_T$ is nonexpansive, where $P_T(x)=\{u_x{\in}Tx:{\parallel}x-u_x{\parallel}=d(x,Tx)\}$. For $f:C{\rightarrow}C$ a contraction and $t{\in}(0,1)$, let $x_t$ be a fixed point of a contraction $S_t:C{\rightarrow}{\mathcal{K}}(E)$, defined by $S_tx:=tP_T(x)+(1-t)f(x)$, $x{\in}C$. It is proved that if C is a nonexpansive retract of E and $\{x_t\}$ is bounded, then the strong ${\lim}_{t{\rightarrow}1}x_t$ exists and belongs to the fixed point set of T. Moreover, we study the strong convergence of $\{x_t\}$ with the weak inwardness condition on T in a reflexive Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm. Our results provide a partial answer to Jung's question.

  • PDF

Finiteness properties of some poincare duality groups

  • Lee, Jong-Bum;Park, Chan-Young
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.33-40
    • /
    • 1995
  • A space Y is called finitely dominated if there is a finite complex K such that Y is a retract of K in the homotopy category, i.e., we require maps $i : Y \longrightarrow K and r : K \longrightarrow Y with r \circ i \simeq idy$. The following questions are very classical in topology.

  • PDF