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Abstract

The concept of a intuitionistic fuzzy topology ( IFT) was introduced by Coker 1997. The concept of a fuzzy retract was introdu
ced by Rodabaugh in 1981. The aim of this paper is to introduce a new concepts of fuzzy continuity and fuzzy retracts in an i

ntuitionistic fuzzy topological spaces and establish some of their properties. Also, the relations between these new concepts are di

scussed.
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1. Introduction

Weaker forms of Intuintionistic fuzzy continuity between
Intuintionistic fuzzy topological spaces have been considered
by [4,5]. We introduce and study in section 2 a new
Intuintionistic fuzzy topological notions called Intuintionistic
fuzzy retract, Intuintionistic fuzzy neighborhood retract. In
section 3, the notions Intuintionistic fuzzy semi retract,
Intuintionistic fuzzy pre retract, Intuintionistic fuzzy strongly
semi-retract and Intuintionistic fuzzy semi pre-retract are
introduced. In section 4, the notions Intuintionistic fuzzy
almost(weakly) retract are introduced. Some of the
fundamental properties of these concepts are investigated.

For definitions and results not explained in this paper, we

refer to the papers [2,4,5,6,7], assuming them to be will known..

Let X be a non-empty set . A fuzzy set in X is a function with
domain X and values in I. The words intuitionistic fuzzy set,
intuitionistic fuzzy topological space, will be abbreviated as IF-
set, IF-ts, respectively. Also by int(v), cl(v) and v we will
denote respectively the interior, closure, and complement of the
IF- set v of IF- topological space.

First, we give the concept of intuitionistic fuzzy set defined
by Atanassov as generalization of the concept of a fuzzy set
given by Zadeh [7].

Definition 1.1 [1]. Let X be a nonempty set. An IF-set A is
an object of the form A= {x,u,(x), v,(x):xe X}. Where the
functions p,:X —»1 and v,:X - denote respectively, the
degree of membership function ( namely u,(x) ) and the
degree of non-membership function ( namely wv,(x) )of A,

0<pu,(x)+v,(x)<1 , for each =xeX An IF-set A=
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XM, (x),v,(x):xe X} can be written in the form A=

{xvp'A ‘UA}‘

Definition 1.2 [2]. Let A={x, 12 ,,v,}. B= {x,1t,,0;)}.

, A={xpu,.v,MieJ).be IFset on X, and f:X—>Y a
function. Then,

D) A={xp,.v,}.

(ii) A<Be foreach xe X[p,<u, and v,2u,

(ili) A=A=B& A<Band B<A

@iv) AA={x,A/,t4,va‘}[7].

) vA={x,vu, ~v, 7.

Definition 1.3 [4]. Let A be an IF-set of an IF-ts (X, §). Then
A is called :

(i) an IF-regular open ( IF-ro, for short ) set if A=int#(cl(A)).

(i) an IF-semiopen ( IF-so, for short ) set if A < cl(int(A)).

(#ii) an IF-preopen ( IF-po, for short ) set if A < int(cl(A)).

(iv) an IF-strongly semiopen ( IF-so, for short )set if
A < int(cl(int(A))).

(v) an IF-semi-preopen ( IF-spo, for short ) set if
A <cl(int(cl(A))).

Their complements are called IF-semiclosed, IF-preclosed,
IF-strongly semiclosed and IF-semi-preclosed sets.

Definition 1.4 [2]. Let X and Y be two nonempty sets and
f:X —Y be a function.

(i) If B= {y,u,(y),05(y):yeY} is an IFS in Y, then the
preimage of B under f ( denoted by £ (B)) is defined by

@ ={x (U0, 7 p(x):xe X}

@@y If A={x,A,(»),A,(»):xe X} is an IFS in X, then the
image of A under f{ denoted by f{A)) is defined by

A= A ={x, fAID1-f1-v,(y):yeY}.

Definition 1.5 [2]. Let A,AGeJ) be IFS 's in X,
B,B(ieJ)beIFS's inY,and f:X —Y be afunction. Then



() A<4 = fASfA)

(i) B <B,= f(B)< f(By)

(iiiy A<Sf(f* (A)[Iffisonetoone, then A= f* (f(A)]

@) f(f (Bp<sB|[Iffisonto, then f*(f(B)}=B

(V) f(UB)=US" (B).f (MB)=nNf"(B)

vy f(LAY=USf (A)

i)  f(nAYSNF(A) If f is one to one, then,
F(nA)y=nf (A)

Wil) £ m=LF O=0f ()=1 [Iffonto], R0)=-0

(ix) If fis onto, then [If furthermore fis one to one, then

cl(f(AN = f(clA)), cl(f* (B)=f" (cl(B).

Definition 1.6 [2]. Let (X,5) and (Y, y) be IFTSs and Let
f:X =Y be afunction. Then fis said to be fuzzy continuous
iff the preimage of each IFS in y is an IFS in 3.

Definition 1.7 [5]. Let X.Y be any [F-sets. If A is an IF- set
of X and B is an IF- set of Y. Then Ax B is an [F- set of Xx Y,
defined by (AXB)=A(x)AB()={11,(X) A s (¥) 1y (X)V 1, (7))
for each (;r, ¥) e XxY . For a mapping f:X —»Y the graph
&:X - XxY of fis defined by g(x)=(x, {x)) foreachx e X .

Definition 1.8 [5]. The product f£xf, :X,xX, —>Y,xY, of
mappings f:X,—Y, and f,:X,—>¥% is defined by
(flxfl)(xl’xl)z(fl(xl)xfl(x:)) for each (x.x)e X, XX,.

Definition 1.9. An IF-ts ( X, §) is called:

(i) an IF-regular space iff each IF-open set A is a union of IF-
open sets I, such that ¢l( 1,)< A for each a.

(i1) an IF-semi regular space iff the collection of all IF-
regular open sets forms a basis of 3.

Lemma 1.1 [5]. For mappings f:X,—Y and IF- sets
Aof X.i=12wehave (fXf,) A,A)=(f(4)XLf(4)

Lemma 1.2 [5]. Let g:X —»XxY be the graph of a
mapping f:X —Y .Then, if A is an IF- set of X and B is an IF-
setof Y, then g' (AXB)=An f* (B).

Lemma 1.3 [5]. For mappings f:X, —Y and IF- sets
of ¥,(i=1,2), we have (f,xf) (AxA)=(f (A)Xf (A)

Definition 1.10 [3]. If ( X,d) is an IF-ts and the induced F-
topological ~ subspace  (A,5,) is defined so that

S, ={vnA:ved}.

2. IF-retracts and IF-neighborhood retracts.

Theorem 2.1 [6]. Let (X, §),(Y, y) and (Z, p) be IF-ts's and
f:X-Y , g:
continuous, then gf s
&) (A)=f"(g" (A)Viep.

Y —-Z be mappings. If f and g are IF-

IF-continuous because
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Theorem2.2 Let (X, .6,),(X,,0,),(, .y ).(,,7,) .and (¥, ,7,) b
e IFts s . Then f:X —Y, and f,:X,—>Y, are IF-
continuous iff the product. f,xf,:X,xX,>YxY, is IF-

continuous.

Proof. Let ne(y,xy)ie., n=v(i,xn,) , where A, ‘s
and n, s are IF- open sets of ( (¥ ,y,) and (1,.,7,) ,
respectively, we want to show that (fxf) @)=
(LX) VA, Xp)e (§,%8,) ). Since  f,:(X,,6,)—>(¥,7,) is
IF-continuous, A, ey, then f*(A,)ed, . Also, since
f:(X,,8,)—>(,.,y,) , is IF-continuous, Hzey, then
Fopyes, we get (£ (AIX S (1) =(fX £ (A, xp,)e
8,x8, hence (f,xf£,) (1)) §,x9,.

Conversely, Let ey, and
fixfi: X, xX,>YxYy, is an
XL ExD=(f A= f"({)ed, , ie, f is an IF-
continuous. The proof with respect to £, in the same fashion.

¢ x1e y,xy, since
IF-continuous, we have

Theorem 2.3. Let (X, §),(Y, y) be IF-ts 's . and
fi(X,8)>.y) be a mapping .Then , the graph
g:(X,6)>(XxY,0) of f is IF-continuous iff f is IF-
continuous , where 0 is the F- product topology generated by
é andy.

Proof. Suppose the graph g:(X,8)—>(XxY,9) is IF-
ney, we want to show that f* i)e & . Since
Ixned then g Axm=Iaf (m=f(med . So fis IF-
continuous .

Conversely, Suppose f is IF-continuous , let (€@, ie .
{=v(A,xu,), where As and pgs are IF- open set of &
and v g C)=g " v, xuy=
v(4, A f(uz)e 8 . So g is IF- continuous.

continuous .

respectively.  Now

Definition 2.1, Let (X, §) be an IF-ts, and Ac X, Then,
the F- subspace (A,8,) is called an IF-retract ( IFR, for short )
of (X, &) if there exists an [F-continuous mapping r :(X, &)
—(A,6,) such that r (a)=a for all a € A . In this case r is
called an IF-retraction.

Remark 2.1. Let (X, § ) be an IF-ts. Since the identity
map id,:X — X is IF-continuous, then X is an IFR of itself.

Proposition 2.1. Let ZcYcX, »5:(X,8)—(Y,5,)be IF-
rn:(¥Y,8,)>(Z,(5,),) be I[F-retraction. Then
nn(X,8)—>(Z,68,),) isan [F-retraction.

retraction

Proof. It follows from Theorem 2.1.

Theorem 2.2, Let (X, §) be an IF-ts, Ac X and r (X,
§) —(A,8,) be a mapping such that r(a)=a for all a < A.
Then the graph g:(X,8) = (X xA,8) of r is IF-continuous iff r
is an IF-retraction , where 0 is the product topology generated
by dand §,.

41



International Journal of Fuzzy Logic and Intelligent Systems, vol. 5, no. 1, March 2005

Proof. It follows directly from Theorem 2.3.

Proposition 2.2, Let (X, 9),(Y, y) be IFts's . AcX,
BcYIf (A8,) isanIFR of (X, §) and (B, y) is an IFR of (7,
Y), then (AxB,(6xY))is an IF-retract of (X xY,8Xy).

Definition 2.2. Let (X, 8) be an IF-ts. Then (A,8,) is said
to be an IF-neighborhood retract ( IF-nbd R, for short ) of (X, 8)
if (A,8,) isanIFRof (¥,6,),suchthat AcYcX , 1,€4.

Remark 2.3, Every IFR is an IF-nbd R, but the converse is
not true.

Example 2.2. Let X={a,b,c},A={a} cX,A and A, be IF-
sets on X, defined by

fpa b cya b ¢
’11’<x’(0.2’0.2’0‘ X G53703° 0.4)>
abc abc
/'12—<x (T T 6) (E’E’T)>

Consider 6 ={0,1,A,4,,4 vA,,A4 A2, } be an IF-ts on X. Then
(A,8,) isanIF-nbd R of (X, d),butnotan IFR of (X, 3).

Proposition 2.3. Let (X, 8),(Y, y) be IF-ts's. AcX,
BcYIf (A,8,) is an IF-nbd R of (X, 3) and (B,7,) is an IF-
nbd R of (¥, y), then (AxB,(6xy)) is an IF-nbd R of
(X XY,6x7).

Proof. Since (A,8,) is an IF-nbd R of (X, 3 ), then
(A,6,)is an IFR of (U,8,) such that AcUc X,1,€6, this
implies that, there exists an mapping
r:(U,8,)>(A.(5,),) such that r(a)=aVae A Also since
(B,y,) is an IF-nbd R of (¥,y ), then (B,7,) is an IFR of (V,
v) such that BcV c X,1, €y, this implies that, there exists an
IF-continuous mapping r,:(V,7,) > (B.,(¥,),) such that
rn(b)=bvbe B By using Theorem 22 we have
(f%1):(UXV,(6X7)) = (AXB,(5x7)))
mapping, 1,xl,edxy and (r,xn)a,b)=(r(a),r,(b)) =
(a,b)V(a,b)e AxB. Hence, Ax Bis an [F-nbd R of Xx Y.

IF-continuous

is an IF-continuous

3. Weaker forms of IFR

Definition 3.1. Let (X, 8) be an IF-ts, and A c X . Then the
IF- subspace (A,6,) is called an IF-semi retract ( IFSR, for
short) ( resp. IF-pre retract, IF-strongly semi-retract and IF-
semi pre retract. ) ( resp. IFPR, IFSSR, IFSPR, for short)of
(X,8) if there exists an IF-semi continuous ( resp. IF-
IF-strongly
precontinuous. ) mapping r (X, § ) —(A4,8,) such that

precontinuous, semicontinuous, IF-semi
r(a)=aVae A. In this case r is called an IF-semi-retraction
( resp. -1F-pre-retraction, IF-strongly semi-retraction, IF-semi

pre-retraction ).
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The implications between these different concepts are given
by the following diagram

IFSR=

IFR = IFSSR = IFSPR
IFPR=

But the converse need not be true, in general as shown by the
following examples

Example 3.1. Let 4 and A, be IF- sets on X={a,b},
defined by

Consider 6 ={0,1,4,4,} }, and A={a}c X be an IF-ts on X.
Then (A,5,) isanIFSS R of (X, 8 ), but not an IFR of it.

Example 3.2. Let A be IF- sets on X={a,b}, defined by

b a b
A ={xn 2 &2
<x 010273 o.3>

Consider §={0,1,1}}, and A={a}c X be an IF-ts on X.
Then (A,8,) isanIFPR of (X, 8 ), but not an IFSSR of it.

Example 3.3. . Let 4 and 4, be IF- sets on X={a,b},
defined by
a b a b
A '<"’(ﬁ’62)’(o‘2’65>
a b a b
= (G o)

Consider 6 ={0,1,4,,4,} }, and A={a} c X be an IF-ts on X.
Then (A,8,) isanIFSS R of (X, 3 ), but not an IFR of it.
IFSR of (X,8),but not an IFSSR.

Example 3.4. Let 4 and A, be IF- sets on X={ab},
defined by

Consider 6 ={0,1,4,,4,} }, and A={a} c X be an IF-ts on X.
Then (A,8,) is an IFSPR of ( X, 8 ), but not an IFSR and
IFPR.

Proposition 3.1. Let (X, ) be an IF-ts, AcX andr:(X,d)
- (A,6,)be a mapping such that r(a)=aVae A.r is an IF-
precontinuous and IF-semicontinuous, then (4,6,) is an
IFSSR of (X, 8).

Proof . The proof is simple and hence omitted.

Definition 3.2. Let (X, 8) be an IF-ts. Then (4,§,) is said to
be an IF-neighborhood semi-retract, ( IF-nbd SR, for short )
( resp. IF-nbd preretract, IF-nbd strongly semi-retract, IF-nbd



semi preretract ) ( resp. [F-nbd PR, IF-nbd SSR, IF-nbd SPR,
for short ) of (X, &) if (A,8,) is IFSR(resp. IFPR, IFSSR,
IFSPR.) of (¥6,),suchthat AcYcX.,1,e6.

Remark 3.1. Every IFPR is also an IF-nbd PR, Every I[FSSR
is also an [F-nbd SSR but the converse is not true in general, as
we show in the following example.

Example 3.5. Let 11 and A, be IF- sets on X={a0b},
defined by

“(x b
2‘—<x’(1 1
A =<x (Oi,Oi,i>,(i,—”—,——>>

Consider 8 ={0,1.4,4.} }, and A={a} c X be an IF-ts on X.
Then (A,8,) is an IF-nbd PR of ( X, § ), but not an IF-PR and
IF-nbdSSR but not IFSSR of it.

Remark 3.2. Every IFSPR is also an [F-nbd SPR, Every
IFSR is also an IF-nbd SR but the converse is not true in
general, as we show in the following example.

Example 3.6 Let A and 2, be IF- sets on X={ab},
defined by

Consider 8§ ={0,1,4,4,} }, and A={a}c X be an [F-ts on X.
Then (A,8,) is an IF-nbd SPR of ( X, & ), but not an IF-SPR
and IF-nbdSR but not IFSR of it.

4, IF-almost ( weak ) continuity and IF- almost
(weakly) retract.

Definition 4.1 [4]. Let (X, 8),(Y, y) be IF-ts s, and
fi(X,6)> ¥,y . fis called

(i) an IF-almost continuous, If for each IF-regular open
vey,wehave £ (v)ed..

(i) an IF-weakly continuous,
have f* W) <int(f* (clv)).

If for each vey we

Theorem 4.1. Let (X, 8),(Y, y) be IF-ts 's , and
FiX,6)-».yy . f is
@) <int(f (clv)) Yvey

IF-almost  continuous  iff

Proof. Let f be an IF-almost continuous, vey , then
v =int(V) <int(ci(V)) = f* (int(L)) < F* (int(cKV)}) y then
int(cl(v)) is IF-regular open, hence f* (int(cl(v)))e § .Thus,
)L FOant(cl(u)) =int( f* (int(cl(v)).

Conversely Let v be IF-regular open e § ,then, we have,

INTUITIONISTIC FUZZY RETRACTS

FT@)<int(f (int(cl(v)) =int( £ (V). Hence

int(f(v)). and f-(v)ed.

ffw=

Proposition 4.1. Let (X, 8)(Y, y) be IF-ts s , and
f:1(X.,8)> ,y). If fis an IF-almost continuous then it is IF-
weakly continuous.

Proof. It follows immediately from Theorem 4.1.

Remark 4.1. The implications between these different
concepts are given by the following diagram.

IF-continuous =» IF-almost centinuous =3 IF-weakly
continuous

Example 4.1 Let A and A, be IF- sets on X={ab.},
defined by

and §={0,1,A,4,} }. Also, {, and ¢, be IF- sets on
X={a,b}, defined by -

a b a b
& —<X,(m,6§),('(ﬁ,m)>
and y={0,1,{,,{,} }. Then the function f:(X,8)—>(.y)
defined by fla)=x, {b)=fc)=y is an IF-almost continuous but
not IF-continuous.

Example 4.2. Let A2 be IF- sets on X={a,b,c}, defined by

and 6={0,L,A} }. Also, { be IF- sets on Y={x, y },
defined by

a b a b
¢ —< (0— 0—) (0— -6—)>
and y={0,,{} }. Then the function f:(X,6)—=(,y)

defined by fla)=x, fib)=f(c)=y is an IF-weakly continuous but
not IF-almost continuous.

Theorem 4.2. Let (X, 98),(Y, v) be IF-ts s , and
f:(X,8)>(,y). is an IF-semi regular space. Then f is IF-
almost continuous iff fis [F-continuous.

Proof. Due to Remark 4.1, it suffices to show that if fis [F-
almost continuous, then f is IF continuous. Let,
then A=vA,, where A, 's are IF-regular open sets of 7.
Now, feM)=f"(vA)=vf (k) , but vi“(A)eNa=
vfT(A,)e & = f is IF continuous.

Aey,
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Theorem 4.3. Let (X,8) be an IF-ts and (Y, y) be an IF-
regular space. Then f is IF-weakly continues iff f is IF-
continuous.

Proof. Due to Remark 4.1, it is suffices to show that if f is
IF-weakly continuous, then it is [F-continuous. Let f be IF-
weakly continuous and Ae § Since (Y, y) is IF-regular space,

A=vA,A,ed and (A2 for each a ,Now,

Theorem 4.6. Let (X, ) be an IF-ts, and Ac X be an IF-
regular space. Then (4,6,) is an IF-almost R of (X, §) iff
(A,6,) isanIF-weakly R of (X, ).

Proof. The proof can be carried by Theorem 4.3. and
Proposition 4.1.

Definition 4.3. Let (X, 3) be an IF-ts, and A < X. Then

FoR) = £ (VALY SV (A) Svel(f(A,) € vint( £ (clA)) S int( £ (A)) (A,8,) is said to be an IF-neighborhood almost R ( IF-nbd

then f“(X)=int(f“ (A)e & = f is IF continuous .

Definition 4.2. Let (X, 3) be an IF-ts, Ac X . Then (4,6,)
is called an IF-almost R ( resp., IF-weakly R ) of (X, 3) if there
exists an IF-almost continuous ( resp., IF-weakly continuous )
mapping r :(X,8) —(A,6,) such that r(a)=aVae A. In this
case r is called an IF-almost retraction ( resp., IF-weakly
retraction)

Proposition 4.2. Consider the following properties:
() (4,6,)1s an IF-R of (X, 8);

(i) (A,8,) isanIF-almostR of (X, 3);

(iii) (A,8,) is an IF-weakly R of (X, §).

Then (i) = (i) = (iii).

Proof. Obvious.

The inverse implications in Proposition 4.2. are not, in
general, true.

Example 4.4.Let A be IF- sets on X={a,b,c}, defined by

A= x,(i,i,i>,<—“—,l,i)>
0.2 071 0.8 0.5 0.5 0.5

Consider § ={0,1,A} be an IF-ts on X and A={x,y} c X. Then
(A,8,) is an IF-almost R of (X,d) but not IF-R of it.

Example 4.5.Let A be IF- sets on X={a,b,c}, defined by
Py =<x,(L,L,L),(L,L,L)>

Consider &={0,1,A} be an IF-ts on X and A={x, y}c X.
Then (A,8,) is an IF-weakly R of (X,8) but not IF-almost R
of it.

Theorem 4.4. Let (X, 8),(Y, y) be IF-ts's, and let A< X be
an IF-semi regular space. Then (A,8,) is an IF-almost R of
(X, 8)iff (A,8,) isanIF-Rof (X, 3).

Proof. follows directly from Theorem 4.1.

Theorem 4.5. Let (X, ) be an IF-ts, and A < X be an IF-
regular space. Then (A,8,) is an IF-weakly R of (X, §) iff
(A,8,) isanIF-R of (X, 3).

Proof. Follows directly from Theorem 4.2.
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almost R, for short ), ( resp., IF-neighborhood weakly R, (IF-
nbd weakly R, for short ) ) of (X, 8) iff (A,6,) is an IF-almost
R (resp., IF weakly R) of (¥.8,) suchthat AcYcX,l,€6.

Remark 4.2. Let (X, §) be an IF-ts,and A c X. (4,8,) isan
IF-almost R of (X, 8 ), then (A,8,) is an IF-nbd almost R of
(X, §), but the converse is not true in general, as shown by the
following example.

Example 4.6. Let 4 and A, be IF- sets on X={a,b,c},
defined by

Take A={x, ¥}, and 6§ ={0,1,4,4,,4 vA,,4 A4 }. Then the
function f:(X,8)—(A,8,), defined by fla)=x, Ab)=Ac)=y is
an IF-nbd almost R of (X, 3), but not IF-almost R of it.

Remark 4.3. Let (X, 8) be anIF-tsand Ac X . (A,6,) isan
IF-weakly R of (X, 8), then (A,8,) is an IF-nbd weakly R of
(X, 3), but the converse is not true in general, as shown by the
following example.

Example 4.7. Example 4.6. show that (A4,8,) is an IF-nbd
weakly R of (X, §), but not IF-weakly R of it.

Remark 4.4. The implications between these different
notions of IF-R are given by the following diagram:

IFSR = IFSPR
1 f

IFR = IFSSR = IFPR
4

IF-almost R = IF-weakly R.

Remark 4.5. The implications between these different
notions of IF-nbd. R are given by the following diagram.

IF-nbd. SR= IF-nbd SPR
[ T
IF-nbd. R = IF-nbd. SSR = IF-nbd. PR
4

IF-nbd. Almost R = IF-nbd. Weakly R
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