• Title/Summary/Keyword: k-quasi class $A_n^*$ operators

Search Result 4, Processing Time 0.021 seconds

WEYL'S THEOREM, TENSOR PRODUCT, FUGLEDE-PUTNAM THEOREM AND CONTINUITY SPECTRUM FOR k-QUASI CLASS An* OPERATO

  • Hoxha, Ilmi;Braha, Naim Latif
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1089-1104
    • /
    • 2014
  • An operator $T{\in}L(H)$, is said to belong to k-quasi class $A_n^*$ operator if $$T^{*k}({\mid}T^{n+1}{\mid}^{\frac{2}{n+1}}-{\mid}T^*{\mid}^2)T^k{\geq}O$$ for some positive integer n and some positive integer k. First, we will see some properties of this class of operators and prove Weyl's theorem for algebraically k-quasi class $A_n^*$. Second, we consider the tensor product for k-quasi class $A_n^*$, giving a necessary and sufficient condition for $T{\otimes}S$ to be a k-quasi class $A_n^*$, when T and S are both non-zero operators. Then, the existence of a nontrivial hyperinvariant subspace of k-quasi class $A_n^*$ operator will be shown, and it will also be shown that if X is a Hilbert-Schmidt operator, A and $(B^*)^{-1}$ are k-quasi class $A_n^*$ operators such that AX = XB, then $A^*X=XB^*$. Finally, we will prove the spectrum continuity of this class of operators.

ON QUASI-A(n, κ) CLASS OPERATORS

  • Lee, Mi Ryeong;Yun, Hye Yeong
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.741-750
    • /
    • 2013
  • To study the operator inequalities, the notions of class A operators and quasi-class A operators are developed up to recently. In this paper, quasi-$A(n,{\kappa})$ class operator for $n{\geq}2$ and ${\kappa}{\geq}0$ is introduced as a new notion, which generalizes the quasi-class A operator. We obtain some structural properties of these operators. Also we characterize quasi-$A(n,{\kappa})$ classes for n and ${\kappa}$ via backward extension of weighted shift operators. Finally, we give a simple example of quasi-$A(n,{\kappa})$ operators with two variables.

GENERALIZED WEYL'S THEOREM FOR ALGEBRAICALLY $k$-QUASI-PARANORMAL OPERATORS

  • Senthilkumar, D.;Naik, P. Maheswari;Sivakumar, N.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.655-668
    • /
    • 2012
  • An operator $T\;{\varepsilon}\;B(\mathcal{H})$ is said to be $k$-quasi-paranormal operator if $||T^{k+1}x||^2\;{\leq}\;||T^{k+2}x||\;||T^kx||$ for every $x\;{\epsilon}\;\mathcal{H}$, $k$ is a natural number. This class of operators contains the class of paranormal operators and the class of quasi - class A operators. In this paper, using the operator matrix representation of $k$-quasi-paranormal operators which is related to the paranormal operators, we show that every algebraically $k$-quasi-paranormal operator has Bishop's property ($\beta$), which is an extension of the result proved for paranormal operators in [32]. Also we prove that (i) generalized Weyl's theorem holds for $f(T)$ for every $f\;{\epsilon}\;H({\sigma}(T))$; (ii) generalized a - Browder's theorem holds for $f(S)$ for every $S\;{\prec}\;T$ and $f\;{\epsilon}\;H({\sigma}(S))$; (iii) the spectral mapping theorem holds for the B - Weyl spectrum of T.

SET-VALUED QUASI VARIATIONAL INCLUSIONS

  • Noor, Muhammad Aslam
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.101-113
    • /
    • 2000
  • In this paper, we introduce and study a new class of variational inclusions, called the set-valued quasi variational inclusions. The resolvent operator technique is used to establish the equivalence between the set-valued variational inclusions and the fixed point problem. This equivalence is used to study the existence of a solution and to suggest a number of iterative algorithms for solving the set-valued variational inclusions. We also study the convergence criteria of these algorithms.