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ON QUASI-A(n, k) CLASS OPERATORS

Mi Ryeong Lee and Hye Yeong Yun

Abstract. To study the operator inequalities, the notions of class A op-
erators and quasi-class A operators are developed up to recently. In this
paper, quasi-A(n, k) class operator for n ≥ 2 and k ≥ 0 is introduced
as a new notion, which generalizes the quasi-class A operator. We ob-
tain some structural properties of these operators. Also we characterize
quasi-A(n, k) classes for n and k via backward extension of weighted shift
operators. Finally, we give a simple example of quasi-A(n, k) operators
with two variables.

1. Introduction

Let H be a separable, infinite dimensional, complex Hilbert space and let
L(H) be the algebra of all bounded linear operators on H. Recall that an
operator T ∈ L(H) is said to be p-hyponormal if (T ∗T )p − (TT ∗)p ≥ 0, p ∈
(0,∞). If p = 1, then T is hyponormal. In particular, T is said to be ∞-
hyponormal if T is p-hyponormal for every p > 0 ([3]). It follows from the
Löwner-Heinz inequality that every p-hyponormal operator is a q-hyponormal
operator for q ≤ p. An operator T belongs to class A if |T 2| ≥ |T |2, where
|T | = (T ∗T )1/2 ([4]). The class A operator is developed as a nice application
of the Furuta inequality and there are many generalized classes of operators of
class A operator (cf. [2], [4], [9], [12]-[14]).

An operator T is quasi-class A operator if T ∗|T 2|T ≥ T ∗|T |2T ([11]). In
[5], Gao-Fang generalized this operator as k-quasiclass A for a positive integer
k, i.e., T ∗k|T 2|T k ≥ T ∗k|T |2T k, and showed some useful inequalities of this
class of operators. An operator T is a normaloid if ‖T ‖ = r(T ), where r(T )
is the spectral radius of T . In [11], some structural properties of quasi-class
A operator are developed in several notions, and they provide some examples
which are quasi-class A operator but not normaloid. Recall that an operator
T is spectraloid if w(T ) = r(T ), where w(T ) is the numerical radius of T .
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The inclusion relationships among these classes are well known as follows:

• quasinormal ⇒ ∞-hyponormal ⇒ p-hyponormal (0 < p < ∞) ⇒ class
A ⇒ normaloid ⇒ spectraloid;

• class A ⇒ quasiclass A ⇒ k-quasiclass A ⇒ spectraloid.

In general the reverse of above implications are not true. The study of partial
normalities such as p-hyponormality and other weak hyponormalities has been
considered for more than 20 years (see [3]). But until now, we obtained a few
models which characterize the properties among above classes of operators. So
it is worthwhile to investigate a model to show distinctions between classes of
operators.

In this paper, we consider a new notion, namely quasi-A(n, k) class operator,
which generalizes class A and k-quasiclass A operators.

Definition 1.1. For integers n ≥ 2 and k ≥ 0, a bounded operator T is called
a quasi-A(n, k) class if

(1.1) T ∗k|T n|T k ≥ T ∗k|T |nT k.

An operator T is called the quasi-A(∞, k) class if the inequality in (1.1) holds
for all n ≥ 2.

Obviously the quasi-A(2, 0) (or A(2, 1), respectively) class operator is re-
ferred as the class A (or quasi-class A, respectively) operator ([11]). For k ≥ 1,
the quasi-A(2, k) class operator is k-quasiclass A operator ([5]). Suppose that
T is ∞-hyponormal, by the Löwner-Heinz inequality, obviously we have that T
has the quasi-A(n, 0) class for all n ≥ 2. An easy property of operator inequal-
ity shows that if T is quasi-A(n, k) class, then T is quasi-A(n, k + 1) class for
all k ≥ 0. Recall that if T is a p-hyponormal for p > 0, then T ∗nT n ≥ (T ∗T )n

for all positive integer n ≤ p ([4]). By using Löwner-Heinz inequality, we easily
show that if T is ∞-hyponormal, then T is quasi-A(n, k) class operator for all
n ≥ 2 and k ≥ 0. In fact the study of quasi-A(n, k) class operators contributes
to the operator gaps related to various classes of operators locating among
quasinormal operators and spectraloid operators (see Remark 3.3).

This paper consists of three parts as follows. In Section 2, we show some
properties of quasi-A(n,k) class operators via the Hansen inequality and Hölder-
McCarthy inequality. In Section 3, we consider a model to distinguish with
quasi-A(n, k) class operators relative to n ≥ 2 and k ≥ 0. As the main tool in
this note, we use a backward extension of weighted shift operators. Finally, we
show mutually disjoint ranges of quasi-A(n, k) class operators for n ≥ 2 and
k ≥ 0 in 2-dimensional space.

Throughout this paper, we write R+ for the set of positive real numbers.

2. Some properties of quasi-A(n, k) class operators

We begin our work with the following lemmas.

Lemma 2.1 (Hansen inequality ([7])). If bounded operators A and B satisfy

A ≥ 0 and ‖B‖ ≤ 1, then (B∗AB)δ ≥ B∗AδB for all 0 < δ ≤ 1.
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The following lemma is a slight modification of [11, Theorem 2.2] and [5,
Lemma 2.1].

Lemma 2.2. Let T be a quasi-A(n, k) class for n ≥ 2 and k ≥ 1 and let

T =

(
T1 T2

0 T3

)

relative to ranT k ⊕ kerT ∗k.

Assume that ranT k is not dense. Then T1 has the inequality |T n
1 | ≥ |T1|n

(n ≥ 2) on ranT k and T k
3 = 0. Moreover, σ(T ) = σ(T1) ∪ {0}.

Proof. This idea comes from proof of [11, Theorem 2.2]. Let P be the or-

thogonal projection of H onto ranT k. Then T1 = TP = PTP . Since T is
a quasi-A(n, k) class, P (|T n| − |T |n)P ≥ 0. Using facts that TP = PTP ,
PT ∗ = PT ∗P and Hansen inequality, we have

|T n
1 | = (T ∗n

1 T n
1 )

1/2 = (PT ∗ · · ·PT ∗PT ∗PT ∗
︸ ︷︷ ︸

n

TPTPTP · · ·TP
︸ ︷︷ ︸

n

)1/2

= (PT ∗ · · ·PT ∗PT ∗T ∗TTPTP · · ·TP )1/2

= (PT ∗ · · ·PT ∗T ∗T ∗TTTP · · ·TP )1/2 = · · ·
= (P |T n|2P )1/2 ≥ P |T n|P.

Since |T |P = P |T |P on ranT k, we get (P |T |2P )1/2 = P |T |P on ranT k. So

|T1|n = (PT ∗TP )n/2 = (P |T |P )n = P |T |nP.
Hence |T n

1 | ≥ P |T n|P ≥ P |T |nP = |T1|n for n ≥ 2.

For any x = (x1, x2) ∈ ranT k ⊕ kerT ∗k, we have

〈T k
3 x2, x2〉 = 〈T k(I − P )x, (I − P )x〉 = 〈(I − P )x, T ∗k(I − P )x〉 = 0,

which implies that T k
3 = 0.

Since σ(T )∪G = σ(T1)∪σ(T3), where G is the union of holes in σ(T ) which
happens to be a subset of σ(T1)∩σ(T3) (see [6]), σ(T3) = {0}, and σ(T1)∩σ(T3)
has no interior points, we have σ(T ) = σ(T1) ∪ {0}. �

Lemma 2.3 (Hölder-McCarthy inequality ([3])). Let A ≥ 0. Then the follow-

ing assertions hold.

(i) 〈Arx, x〉 ≥ 〈Ax, x〉r‖x‖2(1−r) for r ≥ 1 and all x ∈ H.

(ii) 〈Arx, x〉 ≤ 〈Ax, x〉r‖x‖2(1−r) for 0 ≤ r ≤ 1 and all x ∈ H.

The following results are slight improvements of [5, Theorem 2.2].

Proposition 2.4. Let T be a quasi-A(n, k) class for n ≥ 2 and k ≥ 0. Then

(i) ‖T n+mx‖‖Tmx‖ ≥ ‖Tm+1x‖n‖Tmx‖2−n for all x ∈ H and all m ≥ k.
(ii) If Tm = 0 for some m ≥ k, then T k+1 = 0.

Proof. (i) From the operator inequality, it is clear that quasi-A(n, k) class op-
erators are quasi-A(n, k + 1) class operators, and so we will prove for the case
m = k. Without loss of generality, we assume that T kx 6= 0.
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Using Hölder-McCarthy inequality, we have that for all x ∈ H,

〈T ∗k|T n|T kx, x〉 ≤ 〈|T n|2T kx, T kx〉1/2‖T kx‖2(1−1/2) = ‖T n+kx‖‖T kx‖,
〈T ∗k|T |nT kx, x〉 ≥ 〈|T |2T kx, T kx〉n/2‖T kx‖2(1−n/2) = ‖T k+1x‖n‖T kx‖2−n.

Hence we obtain that

‖T n+kx‖ ‖T kx‖ ≥ ‖T k+1x‖n ‖T kx‖2−n, x ∈ H.

(ii) If T k = 0, then it is obvious that T k+1 = 0. Suppose that T k 6= 0 and
T k+j = 0 for some j ≥ 2. Take n = j and m = k in Proposition 2.4(i). It
follows from (i) that T k+1 = 0. �

Theorem 2.5. Let T be a quasi-A(n, k) class for n ≥ 2 and k ≥ 1. If (T −
λ)x = 0 for some λ 6= 0, then (T − λ)∗x = 0.

Proof. We may assume that x 6= 0. Let M = span{x}. Then M is an invariant
subspace of T and

T =

(
λ T2

0 T3

)

on M⊕M⊥.

Let P be the orthogonal projection of H onto M. For the proof, we claim that

T2 = 0. Since T is a quasi-A(n, k) class and x = T k(x/λk) ∈ ranT k, we have
P (|T n| − |T |n)P ≥ 0. It follows from TP = PTP and PT ∗ = PT ∗P that

P |T n|2P = P T ∗ · · ·T ∗
︸ ︷︷ ︸

n

T · · ·T
︸ ︷︷ ︸

n

P = PT ∗PT ∗ · · ·T ∗T · · ·TPTP

= · · · = PT ∗ · · ·PT ∗
︸ ︷︷ ︸

n

TP · · ·TP
︸ ︷︷ ︸

n

=

(
|λ|2n 0
0 0

)

.

Then using Hansen inequality, we have that
(

|λ|n 0
0 0

)

= (P |T n|2P )1/2 ≥ P |T n|P ≥ P |T |nP =

(
|λ|n 0
0 0

)

.

So we may write

|T n| =
(

|λ|n A
A∗ B

)

.

Hence
(
|λ|2n 0
0 0

)

= P |T n||T n|P =

(
1 0
0 0

)(
|λ|n A
A∗ B

)(
|λ|n A
A∗ B

)(
1 0
0 0

)

=

(
|λ|2n +AA∗ 0

0 0

)

,

which implies that A = 0 and

|T n|2 =

(
|λ|2n 0
0 B2

)

.
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On the other hand,

|T n|2 =

(
λ 0
T ∗
2 T ∗

3

)

· · ·
(

λ 0
T ∗
2 T ∗

3

)(
λ T2

0 T3

)

· · ·
(
λ T2

0 T3

)

=

(

|λ|2n λ
n
C

λnC∗ |C|2 + |T n
3 |2

)

,

where C =
∑n−1

i=0 T2T
i
3λ

n−1−i. Hence C = 0 and B = |T n
3 |. Also using Lemma

2.2, we have

P |T |2nP = P (T ∗T )nP =

(
|λ|2n 0
0 0

)

.

From |T |2 = T ∗T and some computations, we may write for n ≥ 1

|T |2n =

(
A2n B2n

B∗
2n C2n

)

,

where

A2m = A2(m−1)A2 +B2(m−1)B
∗
2 , A2 ≡ |λ|2,

B2m = A2(m−1)B2 +B2(m−1)C2, B2 ≡ λT2,(2.1)

C2m = B∗
2(m−1)B2 + C2(m−1)C2, C2 ≡ |T2|2 + |T3|2

for all m ≥ 2. For each n ≥ 2,
(
|λ|2n 0
0 0

)

= P |T |2nP =

(
1 0
0 0

)(
A2n B2n

B∗
2n C2n

)(
1 0
0 0

)

=

(
A2n 0
0 0

)

.

Using the recurrence formula (2.1), we have

A2n = A2(n−1)|λ|2 +B2(n−1)B
∗
2

= A2(n−2)|λ|4 +
(
|λ|2B2(n−2) +B2(n−1)

)
B∗

2 = · · ·

= |λ|2|λ|2(n−1) +
(

|λ|2(n−2)B2 + |λ|2(n−3)B4 + · · ·+B2(n−1)

)

B∗
2

= |λ|2n + λ
(

|λ|2(n−2)B2 + |λ|2(n−3)B4 + · · ·+B2(n−1)

)

T ∗
2 ,

which implies that T2 = 0 for all n ≥ 2 because of |λ|2n = A2n (λ 6= 0). �

3. Distinctions of quasi-A(n, k) class operators

In this section we characterize the quasi-A(n, k) class weighted shift for all
n ≥ 2 and k ≥ 0 for being distinction of quasi-A(n, k) class operators. For this
purpose, we consider a backward extension of weighted shift (cf. [8]).

For a sequence α = {αi}∞i=0 of positive real numbers, a weighted shift Wα is
defined by Wαen = αnen+1 for all n ≥ 0, where {ei}∞i=0 is an orthonormal basis
for ℓ2(Z+). Obviously, Wα is normal if and only if αn = 0 for all n ≥ 0, and Wα

is quasinormal if and only if αn(α
2
n+1−α2

n) = 0 for all n ≥ 0. Moreover, Wα is
p-hyponormal for all [some] 0 < p < ∞ if and only if α is monotone increasing,
i.e., α0 ≤ α1 ≤ α2 ≤ · · · . By a simple calculation, we see that Wα is of class
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A if and only if the sequence α is monotone increasing. But there exists a
sequence {αn}∞n=0 ⊂ R+ such that α1 ≤ α2 ≤ α3 ≤ · · · and Wα is quasi-class
A but not normaloid ([11]). Moreover, Wα is k-quasiclass A operator if and
only if αk ≤ αk+1 ≤ αk+2 ≤ · · · for a positive integer k ([5]).

Now we obtain some conditions of quasi-A(n, k) class property for any n ≥ 2
and k ≥ 0 for a weighted shift operator.

Lemma 3.1. Let Wα be a weighted shift with weight sequence α = {αi}∞i=0.

Then Wα is quasi-A(n, k) class if and only if

(3.1)

n−1∏

i=1

αk+j+i ≥ αn−1
k+j for all j ≥ 0.

Proof. By direct computations, we have that

W ∗k
α |Wn

α |W k
α ≥ W ∗k

α |Wα|nW k
α

⇔ Diag







k−1+j
∏

i=j

αi





k+n−1+j
∏

i=k+j

αi − αn
k+j











∞

j=0

≥ 0,

which is equivalent to (3.1). �

Corollary 3.2. Let Wα be a weighted shift with weight α = {αi}∞i=0. If α is

an increasing sequence, then Wα is quasi-A(n, k) class for all n ≥ 2 and k ≥ 0.

Proof. Using Lemma 3.1, it is obvious. �

Remark 3.3. Consider a weighted shift Wα with α0 = 2 and αn = 1 (n ≥ 1).
From simple computations, Wα turns to be quasi-A(2, k) class for all k ≥ 1.
i.e., Wα is ∞-quasiclass A, equivalently, quasi-A(2,∞) class. However, since

r(Wα) = lim
n→∞

‖Wn
α ‖

1

n = 1,

it turns out that Wα is not normaloid.

To find gaps among classes of quasi-A(n, k) class operators with respect to
n and k, we consider a backward extension weighted shift operator (cf. [8]).
For a weighted shift Wα with weight sequence α = {αi}∞i=0 and ℓ ∈ N, let

α(x1, . . . , xℓ) : x1, x2, . . . , xℓ, α0, α1, . . .

be an augmented sequence with positive real number xj , 1 ≤ j ≤ ℓ. Such a
weighted shift Wα(x1,...,xℓ) is called an ℓ-step backward extension weighted shift

operator of Wα (cf. [10]). Write the set

Rℓ
+ := {(x1, . . . , xℓ) : xi > 0, 1 ≤ i ≤ ℓ}.

For finding the region for distinction of quasi-A(n, k) class operators, we con-
sider the following sets

(3.2) A(n, k; ℓ) := {(x1, . . . , xℓ) ∈ Rℓ
+ : Wα(x1,...,xℓ) is quasi-A(n, k) class}
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for n ≥ 2 and k ≥ 0.

The following example proves easily that the increasing condition of weight
sequence is essential in order to show gaps between classes of quasi-A(n, k)
class operators each other for all n ≥ 2 and k ≥ 0.

Example 3.4. Let α : 2, 2, 1, 1, 1, . . . and let α(x) : x, 2, 2, 1, 1, 1, . . .. We
consider the corresponding weighted shift operators Wα and Wα(x) with weight
sequences α and α(x), respectively. A straightforward calculation shows that
Wα can be never quasi-A(n, k) class operator for all n ≥ 2 and k ≥ 0. Moreover,
we can obtain that A(n, k; 1) = ∅ for all n ≥ 2 and k ≥ 0.

Proposition 3.5. For a positive integer ℓ, let Wα(x1,...,xℓ) be an ℓ-step backward

extension of weighted shift operator Wα with an increasing sequence α. Then

A(n, k; ℓ) = Rℓ
+ for all n ≥ 2 and k ≥ ℓ.

Proof. For brevity, we consider a sequence β = {βm}∞m=0, where

βm =

{
xm+1 (0 ≤ m ≤ ℓ− 1),
αm−ℓ (m ≥ ℓ).

For all n ≥ 2 and k ≥ 0, it follows from Lemma 3.1 that

Wα(x1,...,xℓ) is quasi-A(n, k) class ⇐⇒ Πn−1
i=0 βk+j+i ≥ βn

k+j (j ≥ 0).

For k ≥ ℓ, using the increasing property of α in (3.1), we have that

Πn−1
i=0 βk+j+i = αk+j−ℓαk+j−ℓ+1 · · ·αk+j−ℓ+n−1 ≥ αn

k+j−ℓ = βn
k+j

for all j ≥ 0 and all (x1, . . . , xℓ) ∈ Rℓ
+. Hence A(n, k; ℓ) = Rℓ

+ for all k ≥ ℓ. �

Theorem 3.6. For a positive integer ℓ, let Wα(x1,...,xℓ) be an ℓ-step backward

extension of weighted shift Wα with an increasing sequence α. Suppose that

m,n ≥ 2 and 0 ≤ p, q < ℓ. Then

(i) it holds that

A(m, p; ℓ)

=







(x1, ..., xℓ) : 0 < xi ≤





ℓ∏

j1=i+1

xj1

m−l+i−2∏

j2=0

αj2





1

m−1

, i = p+ 1, . . . , ℓ







,

(ii) it holds that A(m, p; ℓ) 6= A(n, q; ℓ) ⇐⇒ (m, p) 6= (n, q).

Proof. (i) Using the condition (3.1) about Wα(x1,...,xℓ) and the condition of
increasing sequence α, we have that

Wα(x1,...,xℓ) is quasi-A(m, p; ℓ) class

⇐⇒ xp+j+2 · · ·xℓ · α0 · · ·αp+j+m−1−ℓ ≥ xm−1
p+j+1 (0 ≤ j ≤ ℓ− p− 1)

⇐⇒ xm−1
i ≤

ℓ∏

j1=i+1

xj1

m−ℓ+i−2∏

j2=0

αj2 (p+ 1 ≤ i ≤ ℓ).
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(ii) We first show that A(m, p; l) 6= A(m, q; l) for m = n and 0 ≤ p 6= q ≤ ℓ.
From (3.1) and the increasing condition of α, the following holds:

(x1, . . . , xℓ) ∈ A(m, p; ℓ)

⇐⇒ xi+1 · · ·xℓ · α0 · · ·αi+m−ℓ−2 ≥ xm−1
i (p+ 1 ≤ i ≤ ℓ).

This holds for all xj > 0 (j = 1, . . . , p), which implies that A(m, p; ℓ) 6=
A(m, q; ℓ) for 0 ≤ p 6= q < ℓ.

Next, we claim that if m 6= n and 0 ≤ k < ℓ, then A(m, k; ℓ) 6= A(n, k; ℓ).
In fact, from Proposition 3.5, we see that A(m, k; ℓ) = A(n, k; ℓ) for k ≥ ℓ and
allm,n ≥ 2. It is sufficient to show that for 0 ≤ k < ℓ. To show the distinctions
of the classes A(m, k; l), we consider the last two cases of i = ℓ − 1 and i = ℓ.
In fact, we can verify that

xη−1
ℓ−1

α0 · · ·αη−3
≤ xℓ ≤ (α0 · · ·αη−2)

1

η−1

for η = m and η = n. Suppose 2 ≤ m � n. From the increasing condition
of α, we obtain that 1/(α0 · · ·αn−3) < 1/(α0 · · ·αm−3). If we denote a :=

(α0 · · ·αm−2)
1

m−1 and b := (α0 · · ·αn−2)
1

n−1 , then

(m− 1)(n− 1)(ln b− ln a) = (m− n)
m−2∑

i=0

lnαi + (m− 1)
n−2∑

i=m−1

lnαi

≥ (m− n)(m− 1) lnαm−2 + (m− 1)(n−m) lnαm−1

= (n−m)(m− 1) (lnαm−1 − lnαm−2) > 0.

Hence b > a for 2 ≤ m < n, which induces that A(m, k; ℓ) 6= A(n, k; ℓ) for
2 ≤ m < n and 0 ≤ k < ℓ. Also we observe that A(m, k; ℓ) ⊂ A(n, k; ℓ) for
m ≤ n and A(m, p; ℓ) ⊂ A(m, q; ℓ) for p ≤ q < ℓ. This proves the arbitrary
cases by the above two cases. �

We now close this note with an example of the quasi-A(n, k) class operators
with two positive variables which provides a distinction for such classes.

Example 3.7. Consider an augmented weight sequence α(
√
x,

√
y):

√
x,

√
y,

α0, α1, . . . with αn =
√

n+3
n+4 (n ≥ 0) and positive real variables x and y. Let

Wα(
√
x,
√
y) be a 2-step backward extension of a weighted shift Wα. From some

easy computations, we can obtain that

{(x, y) ∈ R2
+ : Wα(

√
x,
√
y) is quasinormal} = ∅.

But our model A(n, k; ℓ) as in (3.2) has a region below the classes of quasinormal
operators. For n ≥ 2 and k ≥ 0, we denote

A(n, k) := A(n, k; 2) = {(x, y) ∈ R2
+ : Wα(

√
x,
√
y) is quasi-A(n, k) class}.
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For k ≥ 2, the increasing property of {αi}∞i=0 proves that the condition (3.1)
holds for all x, y ≥ 0, i.e.,

A(n, k) = R2
+ for all k ≥ 2.

Now we only consider the cases such that k = 0 and 1 for each n ≥ 2. Also
we note that if k + j ≥ 2 for all k, j ≥ 0, then the condition (3.1) holds for all
x, y > 0. In order to show the distinctions among the sets A(n, k) for n ≥ 2
and k = 0, 1, we find equivalent conditions to (3.1) for each n and k. By some
calculations in condition (3.1), we can have the followings:

A(n, 0) =

{

(x, y) ∈ R2
+ : xn−1 ≤ 3y

n+ 1
, yn−1 ≤ 3

n+ 2

}

;

A(n, 1) =

{

(x, y) ∈ R2
+ : yn−1 ≤ 3

n+ 2

}

,

which imply that the sets A(n, k) are distinct with respect to n and k. Further,
we also have that A(m, k) ( A(n, k) for 2 ≤ m � n and k = 0, 1 (Indeed, since

the function f(x) =
(

3
x+2

)1/(x−1)

is strictly increasing for x ≥ 2, we have that
(

3
m+2

)1/(m−1)

<
(

3
n+2

)1/(n−1)

for 2 ≤ m < n). Hence

Wα(
√
x,
√
y) is class A operator ⇐⇒ (x, y)∈A(2, 0) ⇐⇒ 0 < x ≤ y ≤ 3/4,

Wα(
√
x,
√
y) is quasi-class A operator ⇐⇒ (x, y)∈A(2, 1) = R+ × (0, 3/4] .

And we have

Wα(
√
x,
√
y) is quasi-A(∞, 0) class ⇐⇒ (x, y) ∈ ∪∞

n=2A(n, 0) = (0, 1)× (0, 1),

Wα(
√
x,
√
y) is quasi-A(∞, 1) class ⇐⇒ (x, y) ∈ ∪∞

n=2A(n, 1) = R+ × (0, 1).
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