• 제목/요약/키워드: k-nearest neighbor smoothing

검색결과 7건 처리시간 0.022초

The Rank Transform Method in Nonparametric Fuzzy Regression Model

  • Choi, Seung-Hoe;Lee, Myung-Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권3호
    • /
    • pp.617-624
    • /
    • 2004
  • In this article the fuzzy number rank and the fuzzy rank transformation method are introduced in order to analyse the non-parametric fuzzy regression model which cannot be described as a specific functional form such as the crisp data and fuzzy data as a independent and dependent variables respectively. The effectiveness of fuzzy rank transformation methods is compared with other methods through the numerical examples.

  • PDF

k-NN 알고리즘을 활용한 단기 교통상황 예측: 서울시 도시고속도로 사례 (Short-term Traffic States Prediction Using k-Nearest Neighbor Algorithm: Focused on Urban Expressway in Seoul)

  • 김형주;박신형;장기태
    • 대한교통학회지
    • /
    • 제34권2호
    • /
    • pp.158-167
    • /
    • 2016
  • 본 연구는 실시간 자료를 기반으로 k-NN을 활용한 단기 교통상황 예측 시 각 단계별 세부절차 및 변수결정, 입력자료 구축 등의 각 단계별 잠재적 예측오차에 대한 원인분석 및 시사점 도출을 목적으로 한다. 다양한 단기 예측모형에 대한 선행연구 검토를 통하여 k-NN 모형의 유용성을 검토하였고 이에 대한 적용가능성을 분석하였다. 본 연구의 k-NN 모형은 이력자료 평활화 및 패턴DB 구축의 입력자료 부분, 실시간 자료와 과거 이력자료와의 유사성 측정 및 k 근접이웃 결정 등의 k-NN 알고리즘 부분, 그리고 예측 시간간격에 따른 출력결과 부분 등으로 구성되며 올림픽대로 김포방향 한강대교 남단~여의상류IC 구간을 대상으로 분석을 실시하였다. 교통자료의 불규칙 잡음으로 인하여 정확한 패턴매칭을 위해서 이력자료의 평활화를 실시하였으며, 이력자료 패턴 DB는 일반 및 이벤트 상황으로 구분하여 활용하였다. 최적의 시계열 자료 및 k 근접이웃 결정을 위해서 시행착오 방법을 적용하였으며, 단기 교통상황 예측 시 예측 시간간격이 증가할수록 예측오차가 증가하는 패턴, 그리고 교통상태가 급변하는 시점에서도 예측오차가 증가함을 알 수 있었다. 본 연구의 k-NN 모형에 대한 각 단계별 예측오차에 대한 원인을 분석하여 개선방향을 제시함으로써 향후 신뢰성 있는 단기 교통상황예측 정보제공 및 시스템에 활용이 가능할 것으로 판단된다.

데이터 크기에 따른 k-NN의 예측력 연구: 삼성전자주가를 사례로 (The Effect of Data Size on the k-NN Predictability: Application to Samsung Electronics Stock Market Prediction)

  • 천세학
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.239-251
    • /
    • 2019
  • 본 논문은 학습데이터의 크기에 따른 사례기반추론기법이 주가예측력에 어떻게 영향을 미치는지 살펴본다. 삼성전자 주가를 대상을 학습데이터를 2000년부터 2017년까지 이용한 경우와 2015년부터 2017년까지 이용한 경우를 비교하였다. 테스트데이터는 두 경우 모두 2018년 1월 1일부터 2018년 8월 31일까지 이용하였다. 시계 열데이터의 경우 과거데이터가 얼마나 유용한지 살펴보는 측면과 유사사례개수의 중요성을 살펴보는 측면에서 연구를 진행하였다. 실험결과 학습데이터가 많은 경우가 그렇지 않은 경우보다 예측력이 높았다. MAPE을 기준으로 비교할 때, 학습데이터가 적은 경우, 유사사례 개수와 상관없이 k-NN이 랜덤워크모델에 비해 좋은 결과를 보여주지 못했다. 그러나 학습데이터가 많은 경우, 일반적으로 k-NN의 예측력이 랜덤워크모델에 비해 좋은 결과를 보여주었다. k-NN을 비롯한 다른 데이터마이닝 방법론들이 주가 예측력 제고를 위해 학습데이터의 크기를 증가시키는 것 이외에, 거시경제변수를 고려한 기간유사사례를 찾아 적용하는 것을 제안한다.

비정형의 건설환경 매핑을 위한 레이저 반사광 강도와 주변광을 활용한 향상된 라이다-관성 슬램 (Intensity and Ambient Enhanced Lidar-Inertial SLAM for Unstructured Construction Environment)

  • 정민우;정상우;장혜수;김아영
    • 로봇학회논문지
    • /
    • 제16권3호
    • /
    • pp.179-188
    • /
    • 2021
  • Construction monitoring is one of the key modules in smart construction. Unlike structured urban environment, construction site mapping is challenging due to the characteristics of an unstructured environment. For example, irregular feature points and matching prohibit creating a map for management. To tackle this issue, we propose a system for data acquisition in unstructured environment and a framework for Intensity and Ambient Enhanced Lidar Inertial Odometry via Smoothing and Mapping, IA-LIO-SAM, that achieves highly accurate robot trajectories and mapping. IA-LIO-SAM utilizes a factor graph same as Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping (LIO-SAM). Enhancing the existing LIO-SAM, IA-LIO-SAM leverages point's intensity and ambient value to remove unnecessary feature points. These additional values also perform as a new factor of the K-Nearest Neighbor algorithm (KNN), allowing accurate comparisons between stored points and scanned points. The performance was verified in three different environments and compared with LIO-SAM.

UWB 레이더를 사용한 수면무호흡환자에 대한 비접촉방식 수면효율 및 수면 단계 추정 (Noncontact Sleep Efficiency and Stage Estimation for Sleep Apnea Patients Using an Ultra-Wideband Radar)

  • 박상배;김정하
    • 한국산업융합학회 논문집
    • /
    • 제23권3호
    • /
    • pp.433-444
    • /
    • 2020
  • This study proposes a method to improve the sleep stage and efficiency estimation of sleep apnea patients using a UWB (Ultra-Wideband) radar. Motion and respiration extracted from the radar signal were used. Respiratory signal disturbances by motion artifacts and irregular respiration patterns of sleep apnea patients are compensated for in the preprocessing stage. Preprocessing calculates the standard deviation of the respiration signal for a shift window of 15 seconds to estimate thresholds for compensation and applies it to the breathing signal. The method for estimating the sleep stage is based on the difference in amplitude of two kinds of smoothed respirations signals. In smoothing, the window size is set to 10 seconds and 34 seconds, respectively. The estimated feature was processed by the k-nearest neighbor classifier and the feature filtering model to discriminate between the sleep periods of the rapid eye movement (REM) and non-rapid eye movement (NREM). The feature filtering model reflects the characteristics of the REM sleep that occur continuously and the characteristics that mainly occur in the latter part of this stage. The sleep efficiency is estimated by using the sleep onset time and motion events. Sleep onset time uses estimated features from the gradient changes of the breathing signal. A motion event was applied based on the estimated energy change in the UWB signal. Sleep efficiency and sleep stage accuracy were assessed with polysomnography. The average sleep efficiency and sleep stage accuracy were estimated respectively to be about 96.3% and 88.8% in 18 sleep apnea subjects.

ARPA 레이더 개발을 위한 물표 획득 및 추적 기술 연구 (A Study on Target Acquisition and Tracking to Develop ARPA Radar)

  • 이희용;신일식;이광일
    • 한국항해항만학회지
    • /
    • 제39권4호
    • /
    • pp.307-312
    • /
    • 2015
  • ARPA(Automatic Radar Plotting Aid)는 자동레이더 플로팅 장치로써, 레이더 물표의 상대침로와 상대방위로 구성된 운동벡터에 본선의 침로와 방위로 구성되는 운동벡터를 가감 연산(벡터연산)하여, 물표의 진침로와 진방위 및 최근접점과 근접시간을 계산하는 장치를 말한다. 본 연구의 목적은 ARPA 레이더를 구현하기 위한 물표의 획득 및 추적 기술을 개발하는 것으로, 이에 관한 여러 선행 연구를 검토하여 적용 가능한 알고리듬 및 기법을 조합하여 기초적인 ARPA 기능을 개발하였다. 주요 연구내용으로, 레이더 영상에서 물표를 획득하기 위하여, 회색조 변환, 가운시안 평활 필터 적용, 이진화 및 라벨링(Labeling)과 같은 순차적 영상 처리 방법을 고안하였고, 이전 영상에서의 물표가 다음 영상에서의 어느 물표인지를 결정하는데 근접이웃탐색알고리듬을 사용하였으며, 물표의 진침로와 진방위를 계산하는 거동해석에 칼만필터를 사용하였다. 또한 이러한 기법을 전산 구현하여 실선실험을 수행하였고, 이를 통해 개발된 ARPA의 기능이 실용상 사용가능함을 검증하였다.

임상도와 Landsat TM 위성영상을 이용한 산림탄소저장량 추정 방법 비교 연구 (Comparison of Forest Carbon Stocks Estimation Methods Using Forest Type Map and Landsat TM Satellite Imagery)

  • 김경민;이정빈;정재훈
    • 대한원격탐사학회지
    • /
    • 제31권5호
    • /
    • pp.449-459
    • /
    • 2015
  • 기존의 국가산림자원조사(National Forest Inventory, NFI)에 의한 산림탄소저장량 추정 방법은 국가 규모의 평균 탄소저장량 추정에는 충분하지만 표본점 개수가 부족한 시 군 단위의 세밀한 추정은 어렵다. 본 연구에서는 시 군별 산림탄소저장량 추정을 위해 공간 자료를 보조 자료로 이용하고 2가지 업스케일링 방법을 적용하여 격자별 산림탄소저장량 정보를 가진 산림탄소지도를 제작하였다. 대상지역은 충청남도로 2가지 방법 모두 제 5차 NFI(2006~2009) 자료를 활용하였다. 방법 1은 임상도를 보조 자료로 선택하고 NFI 기반 산림탄소저장량 회귀모델을 이용하였다. 방법 2는 위성영상을 보조 자료로 선택하고 k-NN을 이용하여 산림탄소저장량을 추정하였다. 불확실성을 고려하기 위해 200회 몬테카를로 시뮬레이션을 수행하여 최종 AGB 탄소지도를 산출하였다. 방법 1에서는 충청남도의 총 산림탄소저장량이 22,948,151 tonC으로 기존의 현지조사표본 기반 추정치(21,136,911 tonC)에 비해 과대추정을, 방법 2에서는 19,750,315 tonC로 과소추정되는 경향을 나타내었다. 독립검증 지점(n=186)의 탄소저장량에 대한 대응표본 T-검정 결과, 방법 2의 평균 추정치와 NFI 표본 기반 평균 추정치는 통계적으로 유의한 차이가 있는 반면(p<0.01), 방법 1의 평균 추정치는 NFI 표본 기반 평균 추정치와 통계적으로 유의한 차이가 없는 것으로 평가되었다(p>0.01). 특히, 방법 2의 경우 k-NN의 스무딩 효과 및 몬테카를로 시뮬레이션을 통해 위성영상과 표본점의 mis-registration 오차가 추정오차에 큰 영향을 미칠 수 있음이 발견되었다. 임상도를 활용한 방법 1이 임분 구조가 복잡한 우리나라 산림의 탄소량 추정에 효과적일 수 있지만, 미조사 지점의 주기적인 갱신 및 대면적 추정에 유리한 위성영상의 활용은 여전히 필수적이다, 따라서 시공간적인 확장과 함께 보다 신뢰할 수 있는 산림탄소저장량 추정을 위해 다양한 위성영상 자료 및 활용 기법에 관한 연구가 필요할 것으로 사료된다.