Journal of the Korean Data and Information Science Society
/
제15권3호
/
pp.617-624
/
2004
In this article the fuzzy number rank and the fuzzy rank transformation method are introduced in order to analyse the non-parametric fuzzy regression model which cannot be described as a specific functional form such as the crisp data and fuzzy data as a independent and dependent variables respectively. The effectiveness of fuzzy rank transformation methods is compared with other methods through the numerical examples.
본 연구는 실시간 자료를 기반으로 k-NN을 활용한 단기 교통상황 예측 시 각 단계별 세부절차 및 변수결정, 입력자료 구축 등의 각 단계별 잠재적 예측오차에 대한 원인분석 및 시사점 도출을 목적으로 한다. 다양한 단기 예측모형에 대한 선행연구 검토를 통하여 k-NN 모형의 유용성을 검토하였고 이에 대한 적용가능성을 분석하였다. 본 연구의 k-NN 모형은 이력자료 평활화 및 패턴DB 구축의 입력자료 부분, 실시간 자료와 과거 이력자료와의 유사성 측정 및 k 근접이웃 결정 등의 k-NN 알고리즘 부분, 그리고 예측 시간간격에 따른 출력결과 부분 등으로 구성되며 올림픽대로 김포방향 한강대교 남단~여의상류IC 구간을 대상으로 분석을 실시하였다. 교통자료의 불규칙 잡음으로 인하여 정확한 패턴매칭을 위해서 이력자료의 평활화를 실시하였으며, 이력자료 패턴 DB는 일반 및 이벤트 상황으로 구분하여 활용하였다. 최적의 시계열 자료 및 k 근접이웃 결정을 위해서 시행착오 방법을 적용하였으며, 단기 교통상황 예측 시 예측 시간간격이 증가할수록 예측오차가 증가하는 패턴, 그리고 교통상태가 급변하는 시점에서도 예측오차가 증가함을 알 수 있었다. 본 연구의 k-NN 모형에 대한 각 단계별 예측오차에 대한 원인을 분석하여 개선방향을 제시함으로써 향후 신뢰성 있는 단기 교통상황예측 정보제공 및 시스템에 활용이 가능할 것으로 판단된다.
본 논문은 학습데이터의 크기에 따른 사례기반추론기법이 주가예측력에 어떻게 영향을 미치는지 살펴본다. 삼성전자 주가를 대상을 학습데이터를 2000년부터 2017년까지 이용한 경우와 2015년부터 2017년까지 이용한 경우를 비교하였다. 테스트데이터는 두 경우 모두 2018년 1월 1일부터 2018년 8월 31일까지 이용하였다. 시계 열데이터의 경우 과거데이터가 얼마나 유용한지 살펴보는 측면과 유사사례개수의 중요성을 살펴보는 측면에서 연구를 진행하였다. 실험결과 학습데이터가 많은 경우가 그렇지 않은 경우보다 예측력이 높았다. MAPE을 기준으로 비교할 때, 학습데이터가 적은 경우, 유사사례 개수와 상관없이 k-NN이 랜덤워크모델에 비해 좋은 결과를 보여주지 못했다. 그러나 학습데이터가 많은 경우, 일반적으로 k-NN의 예측력이 랜덤워크모델에 비해 좋은 결과를 보여주었다. k-NN을 비롯한 다른 데이터마이닝 방법론들이 주가 예측력 제고를 위해 학습데이터의 크기를 증가시키는 것 이외에, 거시경제변수를 고려한 기간유사사례를 찾아 적용하는 것을 제안한다.
Construction monitoring is one of the key modules in smart construction. Unlike structured urban environment, construction site mapping is challenging due to the characteristics of an unstructured environment. For example, irregular feature points and matching prohibit creating a map for management. To tackle this issue, we propose a system for data acquisition in unstructured environment and a framework for Intensity and Ambient Enhanced Lidar Inertial Odometry via Smoothing and Mapping, IA-LIO-SAM, that achieves highly accurate robot trajectories and mapping. IA-LIO-SAM utilizes a factor graph same as Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping (LIO-SAM). Enhancing the existing LIO-SAM, IA-LIO-SAM leverages point's intensity and ambient value to remove unnecessary feature points. These additional values also perform as a new factor of the K-Nearest Neighbor algorithm (KNN), allowing accurate comparisons between stored points and scanned points. The performance was verified in three different environments and compared with LIO-SAM.
This study proposes a method to improve the sleep stage and efficiency estimation of sleep apnea patients using a UWB (Ultra-Wideband) radar. Motion and respiration extracted from the radar signal were used. Respiratory signal disturbances by motion artifacts and irregular respiration patterns of sleep apnea patients are compensated for in the preprocessing stage. Preprocessing calculates the standard deviation of the respiration signal for a shift window of 15 seconds to estimate thresholds for compensation and applies it to the breathing signal. The method for estimating the sleep stage is based on the difference in amplitude of two kinds of smoothed respirations signals. In smoothing, the window size is set to 10 seconds and 34 seconds, respectively. The estimated feature was processed by the k-nearest neighbor classifier and the feature filtering model to discriminate between the sleep periods of the rapid eye movement (REM) and non-rapid eye movement (NREM). The feature filtering model reflects the characteristics of the REM sleep that occur continuously and the characteristics that mainly occur in the latter part of this stage. The sleep efficiency is estimated by using the sleep onset time and motion events. Sleep onset time uses estimated features from the gradient changes of the breathing signal. A motion event was applied based on the estimated energy change in the UWB signal. Sleep efficiency and sleep stage accuracy were assessed with polysomnography. The average sleep efficiency and sleep stage accuracy were estimated respectively to be about 96.3% and 88.8% in 18 sleep apnea subjects.
ARPA(Automatic Radar Plotting Aid)는 자동레이더 플로팅 장치로써, 레이더 물표의 상대침로와 상대방위로 구성된 운동벡터에 본선의 침로와 방위로 구성되는 운동벡터를 가감 연산(벡터연산)하여, 물표의 진침로와 진방위 및 최근접점과 근접시간을 계산하는 장치를 말한다. 본 연구의 목적은 ARPA 레이더를 구현하기 위한 물표의 획득 및 추적 기술을 개발하는 것으로, 이에 관한 여러 선행 연구를 검토하여 적용 가능한 알고리듬 및 기법을 조합하여 기초적인 ARPA 기능을 개발하였다. 주요 연구내용으로, 레이더 영상에서 물표를 획득하기 위하여, 회색조 변환, 가운시안 평활 필터 적용, 이진화 및 라벨링(Labeling)과 같은 순차적 영상 처리 방법을 고안하였고, 이전 영상에서의 물표가 다음 영상에서의 어느 물표인지를 결정하는데 근접이웃탐색알고리듬을 사용하였으며, 물표의 진침로와 진방위를 계산하는 거동해석에 칼만필터를 사용하였다. 또한 이러한 기법을 전산 구현하여 실선실험을 수행하였고, 이를 통해 개발된 ARPA의 기능이 실용상 사용가능함을 검증하였다.
기존의 국가산림자원조사(National Forest Inventory, NFI)에 의한 산림탄소저장량 추정 방법은 국가 규모의 평균 탄소저장량 추정에는 충분하지만 표본점 개수가 부족한 시 군 단위의 세밀한 추정은 어렵다. 본 연구에서는 시 군별 산림탄소저장량 추정을 위해 공간 자료를 보조 자료로 이용하고 2가지 업스케일링 방법을 적용하여 격자별 산림탄소저장량 정보를 가진 산림탄소지도를 제작하였다. 대상지역은 충청남도로 2가지 방법 모두 제 5차 NFI(2006~2009) 자료를 활용하였다. 방법 1은 임상도를 보조 자료로 선택하고 NFI 기반 산림탄소저장량 회귀모델을 이용하였다. 방법 2는 위성영상을 보조 자료로 선택하고 k-NN을 이용하여 산림탄소저장량을 추정하였다. 불확실성을 고려하기 위해 200회 몬테카를로 시뮬레이션을 수행하여 최종 AGB 탄소지도를 산출하였다. 방법 1에서는 충청남도의 총 산림탄소저장량이 22,948,151 tonC으로 기존의 현지조사표본 기반 추정치(21,136,911 tonC)에 비해 과대추정을, 방법 2에서는 19,750,315 tonC로 과소추정되는 경향을 나타내었다. 독립검증 지점(n=186)의 탄소저장량에 대한 대응표본 T-검정 결과, 방법 2의 평균 추정치와 NFI 표본 기반 평균 추정치는 통계적으로 유의한 차이가 있는 반면(p<0.01), 방법 1의 평균 추정치는 NFI 표본 기반 평균 추정치와 통계적으로 유의한 차이가 없는 것으로 평가되었다(p>0.01). 특히, 방법 2의 경우 k-NN의 스무딩 효과 및 몬테카를로 시뮬레이션을 통해 위성영상과 표본점의 mis-registration 오차가 추정오차에 큰 영향을 미칠 수 있음이 발견되었다. 임상도를 활용한 방법 1이 임분 구조가 복잡한 우리나라 산림의 탄소량 추정에 효과적일 수 있지만, 미조사 지점의 주기적인 갱신 및 대면적 추정에 유리한 위성영상의 활용은 여전히 필수적이다, 따라서 시공간적인 확장과 함께 보다 신뢰할 수 있는 산림탄소저장량 추정을 위해 다양한 위성영상 자료 및 활용 기법에 관한 연구가 필요할 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.