• 제목/요약/키워드: k-means clustering Algorithm

검색결과 547건 처리시간 0.027초

FCM Algorithm for Application to Fuzzy Control

  • KAMEI, Katsuari
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.619-624
    • /
    • 1998
  • This paper presents a new clustering algorithm called FCM algorithm for the design of fuzzy controller. FCM is an extended version of FCM(Fuzzy c-Means) algorithm and can estimate the number of clusters automatically and give membership grades $u_{ik}$ suitable for making fuzzy control rules. This paper also shows an example of its application to the line pursuit control of a car.

  • PDF

클러스터 타당성 평가기준을 이용한 최적의 클러스터 수 결정을 위한 고속 탐색 알고리즘 (Fast Search Algorithm for Determining the Optimal Number of Clusters using Cluster Validity Index)

  • 이상욱
    • 한국콘텐츠학회논문지
    • /
    • 제9권9호
    • /
    • pp.80-89
    • /
    • 2009
  • 클러스터링 알고리즘에서 최적의 클러스터 수를 결정하기 위한 효율적인 고속 탐색 알고리즘을 소개한다. 제안하는 방법은 클러스터링 적합도의 척도로 사용되는 클러스터 타당성 평가기준을 토대로 한다. 데이터 집합에 클러스터링 프로세스를 진행하여 최적의 클러스터 형상에 도달하게 되면 클러스터 타당성 평가기준은 최대 혹은 최소값을 가질 것으로 기대한다. 본 논문에서는 최적의 클러스터 개수를 찾기 위한 고속의 비소모적 탐색 방법을 설계하고 실제 클러스터링과 접목한다. 제안하는 알고리즘은 k-means++ 클러스터링 알고리즘에 적용하였고, 클러스터 타당성 평가기준으로써 CB 및 PBM 타당성 평가기준 방법을 사용하였다. 몇몇의 가상 데이터 집합과 실제 데이터 집합에 실험한 결과, 제안하는 방법은 정확도의 손실 없이 계산 효율을 획기적으로 증가시킴을 보여주었다.

Intrusion detection algorithm based on clustering : Kernel-ART

  • Lee, Hansung;Younghee Im;Park, Jooyoung;Park, Daihee
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.109-113
    • /
    • 2002
  • In this paper, we propose a new intrusion detection algorithm based on clustering: Kernel-ART, which is composed of the on-line clustering algorithm, ART (adaptive resonance theory), combining with mercer-kernel and concept vector. Kernel-ART is not only satisfying all desirable characteristics in the context of clustering-based 105 but also alleviating drawbacks associated with the supervised learning IDS. It is able to detect various types of intrusions in real-time by means of generating clusters incrementally.

  • PDF

EEC-FM: Energy Efficient Clustering based on Firefly and Midpoint Algorithms in Wireless Sensor Network

  • Daniel, Ravuri;Rao, Kuda Nageswara
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권8호
    • /
    • pp.3683-3703
    • /
    • 2018
  • Wireless sensor networks (WSNs) consist of set of sensor nodes. These sensor nodes are deployed in unattended area which are able to sense, process and transmit data to the base station (BS). One of the primary issues of WSN is energy efficiency. In many existing clustering approaches, initial centroids of cluster heads (CHs) are chosen randomly and they form unbalanced clusters, results more energy consumption. In this paper, an energy efficient clustering protocol to prevent unbalanced clusters based on firefly and midpoint algorithms called EEC-FM has been proposed, where midpoint algorithm is used for initial centroid of CHs selection and firefly is used for cluster formation. Using residual energy and Euclidean distance as the parameters for appropriate cluster formation of the proposed approach produces balanced clusters to eventually balance the load of CHs and improve the network lifetime. Simulation result shows that the proposed method outperforms LEACH-B, BPK-means, Park's approach, Mk-means, and EECPK-means with respect to balancing of clusters, energy efficiency and network lifetime parameters. Simulation result also demonstrate that the proposed approach, EEC-FM protocol is 45% better than LEACH-B, 17.8% better than BPK-means protocol, 12.5% better than Park's approach, 9.1% better than Mk-means, and 5.8% better than EECPK-means protocol with respect to the parameter half energy consumption (HEC).

신경망 및 통계적 방법에 의한 클러스터링 성능평가 (A Study on Performance Evaluation of Clustering Algorithms using Neural and Statistical Method)

  • 윤석환;민준영;신용백
    • 산업경영시스템학회지
    • /
    • 제19권37호
    • /
    • pp.41-51
    • /
    • 1996
  • This paper evaluates the clustering performance of a neural network and a statistical method. Algorithms which are used in this paper are the GLVQ(Generalized Learning vector Quantization) for a neural method and the k-means algorithm fer a statistical clustering method. For comparison of two methods, we calculate the Rand's c statistics. As a result, the mean of c value obtained with the GLVQ is higher than that obtained with the k-means algorithm, while standard deviation of c value is lower. Experimental data sets were the Fisher's IRIS data and patterns extracted from handwritten numerals.

  • PDF

모바일 기기에서 개인화 추천을 위한 실시간 선호도 예측 방법에 대한 연구 (A Study on the Real-Time Preference Prediction for Personalized Recommendation on the Mobile Device)

  • 이학민;엄종석
    • 한국멀티미디어학회논문지
    • /
    • 제20권2호
    • /
    • pp.336-343
    • /
    • 2017
  • We propose a real time personalized recommendation algorithm on the mobile device. We use a unified collaborative filtering with reduced data. We use Fuzzy C-means clustering to obtain the reduced data and Konohen SOM is applied to get initial values of the cluster centers. The proposed algorithm overcomes data sparsity since it extends data to the similar users and similar items. Also, it enables real time service on the mobile device since it reduces computing time by data clustering. Applying the suggested algorithm to the MovieLens data, we show that the suggested algorithm has reasonable performance in comparison with collaborative filtering. We developed Android-based smart-phone application, which recommends restaurants with coupons and restaurant information.

분산 인 메모리 DBMS 기반 병렬 K-Means의 In-database 분석 함수로의 설계와 구현 (Design and Implementation of Distributed In-Memory DBMS-based Parallel K-Means as In-database Analytics Function)

  • 구해모;남창민;이우현;이용재;김형주
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제24권3호
    • /
    • pp.105-112
    • /
    • 2018
  • 데이터의 양이 증가하면서 단일 노드 데이터베이스로는 저장과 처리를 동시에 수행하기에는 부족하다. 따라서, 데이터를 분산시켜 복수 노드로 구성된 분산 데이터베이스에 저장되고 있으며 분석 역시 효율성을 위해 병렬 기능을 제공해야한다. 전통적인 분석 방식은 데이터베이스에서 분석 노드로 데이터를 이동시킨 후 분석을 수행하기 때문에 네트워크의 비용이 발생하며 사용자가 분석을 위해 분석 프레임 워크도 다를 수 있어야한다. 본 연구는 군집화 분석 기법인 K-Means 군집화 알고리즘을 관계형 데이터 베이스와 칼럼 기반 데이터베이스를 이용한 분산 데이터베이스 환경에서 SQL로 구현하는 In-database 분석 함수로의 설계와 구현 그리고 관계형 데이터베이스에서의 성능 최적화 방법을 제안한다.

A Study on a Statistical Matching Method Using Clustering for Data Enrichment

  • Kim Soon Y.;Lee Ki H.;Chung Sung S.
    • Communications for Statistical Applications and Methods
    • /
    • 제12권2호
    • /
    • pp.509-520
    • /
    • 2005
  • Data fusion is defined as the process of combining data and information from different sources for the effectiveness of the usage of useful information contents. In this paper, we propose a data fusion algorithm using k-means clustering method for data enrichment to improve data quality in knowledge discovery in database(KDD) process. An empirical study was conducted to compare the proposed data fusion technique with the existing techniques and shows that the newly proposed clustering data fusion technique has low MSE in continuous fusion variables.

K-Means 클러스터링을 적용한 향상된 CS-RANSAC 알고리즘 (Improved CS-RANSAC Algorithm Using K-Means Clustering)

  • 고승현;윤의녕;;조근식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권6호
    • /
    • pp.315-320
    • /
    • 2017
  • 이미지를 기반으로 하는 증강현실 시스템에서 가상의 객체를 실제 영상에 저작할 때 생기는 이질감을 줄이기 위해서는 실제 영상에 저작된 가상객체의 방향과 위치에 대해 정확하게 추정을 해야 하며, 이때 호모그래피를 사용한다. 호모그래피를 추정하기 위해서는 SURF와 같은 특징점을 추출하고 추출된 특징점들을 통해 호모그래피 행렬을 추정한다. 호모그래피 행렬의 추정을 위해서 RANSAC 알고리즘이 주로 사용되고 있으며, 특히 RANSAC에 제약 조건 만족 문제(Constraint Satisfaction Problem)와 여기에 사용되는 제약조건을 동적으로 적용하여 속도와 정확도를 높인 DCS-RANSAC 알고리즘이 연구되었다. DCS-RANSAC 알고리즘에서 사용된 이미지 그룹 데이터는 수동적인 방법을 통해 직관적으로 분류되어 있지만 특징점 분포 패턴이 다양하지 않고, 이미지들을 정확하게 분류하기가 어려워서 이로 인해 알고리즘의 성능이 저하되는 경우가 있다. 따라서 본 논문에서는 K-means 클러스터링을 적용하여 이미지들을 자동으로 분류하고 각 이미지 그룹마다 각기 다른 제약조건을 적용하는 KCS-RANSAC 알고리즘을 제안한다. 제안하는 알고리즘은 머신러닝 기법인 K-means 클러스터링을 사용하여 전처리 단계에서 이미지를 특징점 분포 패턴에 따라 자동으로 분류하고, 분류된 이미지에 제약조건을 적용하여 알고리즘의 속도와 정확도를 향상시켰다. 실험 결과 본 논문에서 제안하는 KCS-RANSAC이 DCS-RANSAC 알고리즘에 비해 수행시간이 약 15% 단축되었고, 오차율은 약 35% 줄어들었으며, 참정보 비율은 약 14% 증가되었다.

잎사귀 영상처리기반 질병 감지 알고리즘 (Disease Detection Algorithm Based on Image Processing of Crops Leaf)

  • 박정현;이성근;고진광
    • 한국빅데이터학회지
    • /
    • 제1권1호
    • /
    • pp.19-22
    • /
    • 2016
  • 최근 IT 기술을 활용하여 농작물의 병충해 조기 진단에 관한 연구가 활발히 진행되고 있다. 본 논문은 카메라 센서를 통해 받아온 작물의 잎사귀 이미지를 분석하여 병충해를 조기에 감지할 수 있는 이미지 프로세싱 기법에 대해 논한다. 본 논문은 개선된 K 평균 클러스터링 방법을 활용하여 잎사귀 질병 감염 여부를 진단하는 알고리즘을 제안한다. 잎사귀 감염 분류 실험을 통해, 제안한 알고리즘이 정성적인 평가에서 더 좋은 성능을 나타낸 것으로 분석되었다.

  • PDF