• 제목/요약/키워드: k-mean clustering

검색결과 283건 처리시간 0.035초

Automatic Photovoltaic Panel Area Extraction from UAV Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • 한국측량학회지
    • /
    • 제34권6호
    • /
    • pp.559-568
    • /
    • 2016
  • For the economic management of photovoltaic power plants, it is necessary to regularly monitor the panels within the plants to detect malfunctions. Thermal infrared image cameras are generally used for monitoring, since malfunctioning panels emit higher temperatures compared to those that are functioning. Recently, technologies that observe photovoltaic arrays by mounting thermal infrared cameras on UAVs (Unmanned Aerial Vehicle) are being developed for the efficient monitoring of large-scale photovoltaic power plants. However, the technologies developed until now have had the shortcomings of having to analyze the images manually to detect malfunctioning panels, which is time-consuming. In this paper, we propose an automatic photovoltaic panel area extraction algorithm for thermal infrared images acquired via a UAV. In the thermal infrared images, panel boundaries are presented as obvious linear features, and the panels are regularly arranged. Therefore, we exaggerate the linear features with a vertical and horizontal filtering algorithm, and apply a modified hierarchical histogram clustering method to extract candidates of panel boundaries. Among the candidates, initial panel areas are extracted by exclusion editing with the results of the photovoltaic array area detection. In this step, thresholding and image morphological algorithms are applied. Finally, panel areas are refined with the geometry of the surrounding panels. The accuracy of the results is evaluated quantitatively by manually digitized data, and a mean completeness of 95.0%, a mean correctness of 96.9%, and mean quality of 92.1 percent are obtained with the proposed algorithm.

주성분 분석법과 선형판별 분석법을 이용한 최적화된 방사형 기저 함수 신경회로망 분류기의 설계 (Design of Optimized Radial Basis Function Neural Networks Classifier with the Aid of Principal Component Analysis and Linear Discriminant Analysis)

  • 김욱동;오성권
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.735-740
    • /
    • 2012
  • 본 연구에서는 주성분 분석법 및 선형 판별 분석법을 이용한 다항식 방사형 기저 함수 신경회로망 분류기의 설계 방법론을 소개한다. 주성분 분석법과 선형판별 분석법을 사용하여 주어진 데이터의 정보 손실을 최소화한 특징데이터를 생성하고 이를 다항식 방사형 기저함수 신경회로망의 입력데이터로 사용한다. 방사형 기저 함수 신경회로망의 은닉층은 FCM 클러스터링 알고리즘으로 구성되며 연결가중치는 1차 선형식을 사용하였다. 최적의 분류기 설계를 위해서 최근에 제안된 Artificial Bee Colony(ABC) 최적화 알고리즘을 사용하여 구조 및 파라미터를 동조하였다. ABC 알고리즘을 통해 주성분 분석법과 선형판별 분석법의 고유벡터의 수 및 FCM 클러스터링 알고리즘의 퍼지화 계수등의 파라미터를 동조한다. 제안된 분류기는 대표적인 Machine Learning(ML) 데이터를 사용하여 성능을 평가하며 기존 분류기와 성능을 비교한다.

CORRELATION FUNCTIONS OF THE ABELL, APM, AND X-RAY CLUSTERS OF GALAXIES

  • LEE SUNGHO;PARK CHANGBOM
    • 천문학회지
    • /
    • 제35권3호
    • /
    • pp.111-121
    • /
    • 2002
  • We have measured the correlation functions of the optically selected clusters of galaxies in the Abell and the APM catalogs, and of the X-ray clusters in the X-ray-Brightest Abell-type Clusters of galaxies (XBACs) catalog and the Brightest Clusters Sample (BCS). The same analysis method and the same method of characterizing the resulting correlation functions are applied to all observational samples. We have found that the amplitude of the correlation function of the APM clusters is much higher than what has been previously claimed, in particular for richer subsamples. The correlation length of the APM clusters with the richness R $\ge$ 70 (as defined by the APM team) is found to be $r_0 = 25.4_{-3.0}^{+3.1}\;h^{-1}$ Mpc. The amplitude of correlation function is about 2.4 times higher than that of Croft et al. (1997). The correlation lengths of the Abell clusters with the richness class RC $\ge$ 0 and 1 are measured to be $r_0 = 17.4_{-1.1}^{+1.2}$ and $21.0_{-2.8}^{+2.8}\;h^{-1}$ Mpc, respectively, which is consistent with our results for the APM sample at the similar level of richness. The richness dependence of cluster correlations is found to be $r_0= 0.40d_c + 3.2$ where $d_c$ is the mean intercluster separation. This is identical in slope with the Bahcall & West (1992)'s estimate, but is inconsistent with the weak dependence of Croft et al. (1997). The X-ray bright Abell clusters in the XBACs catalog and the X-ray selected clusters in the BCS catalog show strong clustering. The correlation length of the XBACs clusters with $L_x {\ge}0.65{\times} 10^{44}\;h^{-2}erg\;s^{-1}$ is $30.3_{-6.5}^{+8.2}\;h^{-1}$ Mpc, and that of the BCS clusters with $L_x {\ge}0.70{\times} 10^{44}\;h^{-2}erg\;s^{-1}$ is $30.2_{-8.9}^{+9.8}\;h^{-1}$ Mpc. The clustering strength of the X-ray clusters is much weaker than what is expected from the optical clusters.

Person Tracking by Detection of Mobile Robot using RGB-D Cameras

  • Kim, Young-Ju
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권12호
    • /
    • pp.17-25
    • /
    • 2017
  • In this paper, we have implemented a low-cost mobile robot supporting the person tracking by detection using RGB-D cameras and ROS(Robot Operating System) framework. The mobile robot was developed based on the Kobuki mobile base equipped with 2's Kinect devices and a high performance controller. One kinect device was used to detect and track the single person among people in the constrained working area by combining point cloud data filtering & clustering, HOG classifier and Kalman Filter-based estimation successively, and the other to perform the SLAM-based navigation supported in ROS framework. In performance evaluation, the person tracking by detection was proved to be robustly executed in real-time, and the navigation function showed the accuracy with the mean distance error being lower than 50mm. The mobile robot implemented has a significance in using the open-source based, general-purpose and low-cost approach.

고속도로 통행료 수납자료를 이용한 주행특성 클러스터링 기법 (Driving Characteristics Clustering use TCS Data)

  • 김동근;박원식;양영규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.1025-1028
    • /
    • 2009
  • 고속도로의 다양한 주행특성으로는 과속하는 차량, 휴게소나 기타목적의 이용차량, 운전자의 습관이나 피로도등이 있는데 이에 따라 고속도로 주행시간에 차이가 나타난다. 하지만 현재에는 이러한 특성을 고려하지 않고 통행시간 분류가 되고 있어 정확성과 신뢰성을 보장하지 못하고 있는 실정이다. 이에 본 연구에서는 데이터 분포에 따른 해석을 통하여 TCS데이터의 특성을 고려 할 수 있는 Fuzzy c-means 알고리즘과 단순히 임의의 초기값으로 분류하는 K-means와의 비교를 통해서 주행특성을 고려한 클러스터링 기법이 경우에 따라서 더 효과적이고 신뢰성 있는 분류방법이 될 수 있음을 증명하였다.

딥러닝기반 YOLO를 활용한 후숙과일 분류 및 숙성 예측 시스템 (Deep Learning-based Mango Classification and Prediction System of Fruit Ripening using YOLO)

  • 김영민;박승민
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.187-188
    • /
    • 2021
  • 본 논문에서는 실시간으로 web-cam을 이용해, 후숙과일의 불량 여부를 판단, 분류하고 불량이 없는 후숙과일의 이미지 분석을 통하여 숙성도 예측하는 시스템을 소개한다. 실시간 다중 객체인식에 탁월한 yolo모델을 활용해, 과일의 불량여부 판단 후 분류하고, 이미지를 획득한 뒤, k-mean clustering 알고리즘을 이용해, 이미지를 segmentation 한다. segmentation된 이미지에 grabcut 알고리즘의 foreground-extraction을 사용해 배경 제거를 한 뒤, cluster의 중심색상값 색상값의 면적%, 전체 면적을 이용해 현재 숙성도를 계산하고 이를 이용해 과일의 후숙 시간 데이터와 비교, 숙성이 완료될 시간을 예측한다. 기존 수작업으로 이루어지고 있는 과일의 분류작업의 인력 감소 및 정확성을 높일 수 있는 알고리즘을 제안한다.

  • PDF

X-means 확장을 통한 효율적인 집단 개수의 결정 (Extensions of X-means with Efficient Learning the Number of Clusters)

  • 허경용;우영운
    • 한국정보통신학회논문지
    • /
    • 제12권4호
    • /
    • pp.772-780
    • /
    • 2008
  • K-means는 알고리즘의 단순함과 효율적인 구현이 가능함으로 인해 군집화를 위해 현재까지 널리 사용되는 방법 중 하나이다. 하지만 K-means는 집단의 개수가 사전에 결정되어야 하는 근본적인 문제점이 있다. 이 논문에서는 BIC(Bayesian information criterion) 점수를 이용하여 효율적으로 집단의 개수를 추정할 수 있는 X-means 알고리즘을 확장한 두 가지 알고리즘을 제안한다. 제안한 방법은 기본적으로 X-means 방법을 따르면서 집단이 임의의 분산 행렬을 가질 수 있도록 함으로써 X-means 알고리즘이 원형 집단만을 허용함에 따른 over-fitting을 개선한다. 제안한 방법은 하나의 집단에서 시작하여 계속해서 집단을 나누어가는 하향식 방법으로, BIC score를 최대로 증가시키는 집단을 분할해 나간다. 제안한 알고리즘은 Modified X-means(MX-means)와 Generalized X-means(GX-means)의 두 가지로, 전자는 K-means 알고리즘을, 후자는 EM 알고리즘을 사용하여 현재 주어진 집단들에서 최적의 분할을 찾아낸다. MX-means는 GX-means보다 그 속도에서 앞서지만 집단들이 중첩 된 경우에는 올바른 집단을 찾아낼 수 없는 단점이 있다. GX-means는 실행 속도가 느린 단점이 있지만 집단들이 중첩된 경우에도 안정적으로 집단들을 찾아낼 수 있다. 이러한 점들은 일련의 실험을 통해서 확인할 수 있으며, 제안한 방법들이 기존의 방법들에 비해 나은 성능을 보임을 확인할 수 있다.

L-모멘트법에 의한 강우의 지역빈도분석 (Regional Frequency Analysis for Rainfall using L-Moment)

  • 고덕구;추태호;맹승진;찬다트리베디
    • 한국콘텐츠학회논문지
    • /
    • 제8권3호
    • /
    • pp.252-263
    • /
    • 2008
  • 본 연구에서는 L-모멘트법에 의한 지역화 빈도분석에 따른 설계강우량 추정에 관한 연구를 수행하였다. 제주도와 울릉도의 강우관측소를 제외한 분석에 사용된 65개 강우관측소의 강우자료 수집과 선정된 강우관측지점의 강우자료의 지속시간, 즉 1, 3, 6, 12, 24, 36, 48 및 72시간 지속의 연최대치 계열을 구성하였다. 관측지점을 대상으로 Cluster분석을 실시한 결과 우리나라의 강우관측지점에 대한 합리적인 지역화로 5개의 지역으로 구분되었다. 지역화된 지역에 대한 지속기간별 극치강우자료의 적정분포모형 결정을 위한 6가지 분포모형의 적용하고 적용분포의 L-모멘트비를 산정하여 L-모멘트비도를 도시하고 K-S 검정에 의한 적정분포모형을 선정하였다. 선정된 적정분포는 GEV 분포이며 이 분포에 의해 강우관측치의 점빈도 및 지역빈도분석에 의한 설계강우량을 유도하였다. Monte Carlo 기법에 의해 모의발생된 강우량의 점빈도 및 지역빈도분석에 의한 설계강우량을 유도하였다. 실측치 및 모의발생치의 점빈도 및 지역빈도분석에 의한 설계강우량의 비교분석을 위해 상대제곱근오차와 상대편의오차에 의해 분석한 결과 점빈도 분석에 의한 설계강우량보다 지역빈도분석에 의한 설계강우량의 사용이 적정한 것으로 나타났다.

FCM 기반 추정 가속도 보상을 이용한 기동표적 추적기법 설계 (Designing Tracking Method using Compensating Acceleration with FCM for Maneuvering Target)

  • 손현승;박진배;주영훈
    • 전자공학회논문지SC
    • /
    • 제49권3호
    • /
    • pp.82-89
    • /
    • 2012
  • 본 논문에서는 기동표적의 위치오차에서 구해지는 가속도를 보상하는 지능형 추적 알고리즘을 소개한다. 관측치와 예상위치와의 차이값은 가속도와 순수잡음으로 분리된다. 이때, 최적의 가속도를 얻기 위하여 퍼지 c-means 클러스터링 기법과 예상명중위치기법이 이용되었다. 분리된 가속도와 잡음에 대한 퍼지 이론의 멤버쉽 함수를 결정되고, 이에 따라 기동표적의 기동특성이 인식되어진다. 분리된 가속도와 잡음은 추적 알고리즘 내에서 추정된 오차값을 보상하는데 이용된다. 표적의 추정값을 계산하는 일련의 과정중 필터링 과정은 기동표적의 비선형성을 선형성으로 인식하게 된다. 이것은 필터가 위치오차에서 가속도를 추출하여 남겨진 잡음만을 인식하기 때문이다. 필터링 과정 이후 추출된 가속도를 보상하여 표적의 추정값을 구해낸다. 제안된 기법은 퍼지 시스템의 멤버쉽 함수에서 파라미터를 조절하여 적응성과 강인성을 향상 시켰다. 제안된 시스템의 효율성을 극대화하기 위하여 제안된 기법을 다중모델 구조로 형성한다. 또한 제안된 기법은 온라인 시스템으로서의 수행이 가능하다. 마지막으로 제안된 알고리즘의 효율성을 보여주기 위하여 몇 가지 예를 추가하였다.

Genetic Differentiation of Chinese Indigenous Meat Goats Ascertained Using Microsatellite Information

  • Ling, Y.H.;Zhang, X.D.;Yao, N.;Ding, J.P.;Chen, H.Q.;Zhang, Z.J.;Zhang, Y.H.;Ren, C.H.;Ma, Y.H.;Zhang, X.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권2호
    • /
    • pp.177-182
    • /
    • 2012
  • To investigate the genetic diversity of seven Chinese indigenous meat goat breeds (Tibet goat, Guizhou white goat, Shannan white goat, Yichang white goat, Matou goat, Changjiangsanjiaozhou white goat and Anhui white goat), explain their genetic relationship and assess their integrity and degree of admixture, 302 individuals from these breeds and 42 Boer goats introduced from Africa as reference samples were genotyped for 11 microsatellite markers. Results indicated that the genetic diversity of Chinese indigenous meat goats was rich. The mean heterozygosity and the mean allelic richness (AR) for the 8 goat breeds varied from 0.697 to 0.738 and 6.21 to 7.35, respectively. Structure analysis showed that Tibet goat breed was genetically distinct and was the first to separate and the other Chinese goats were then divided into two sub-clusters: Shannan white goat and Yichang white goat in one cluster; and Guizhou white goat, Matou goat, Changjiangsanjiaozhou white goat and Anhui white goat in the other cluster. This grouping pattern was further supported by clustering analysis and Principal component analysis. These results may provide a scientific basis for the characteristization, conservation and utilization of Chinese meat goats.