• Title/Summary/Keyword: k-Omega SST

Search Result 145, Processing Time 0.021 seconds

Thermo-Flow Analysis of Offset-Strip Fins according to Prandtl Number (Prandtl 수에 따른 옵셋 스트립 핀에서의 열 및 유동 분석)

  • Joo, Youn-Sik;Kong, Dong-Hyun;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.6
    • /
    • pp.340-346
    • /
    • 2009
  • This paper numerically investigates thermo-flow characteristics of offset strip fins to obtain a correlation between heat transfer and pressure drop. The flow was divided into three regimes, i.e. laminar, transition and turbulent. The predicted j and f values from the SST k-$\omega$ turbulence model agreed with previous correlations with the error less than 20% in transition and turbulent regimes. Heat transfer and pressure drop were predicted by varying Prandtl number from 0.5 to 40. The Prandtl number showed little effects on pressure drop but had great effect on the heat transfer characteristics. An overall correlation to predict j was suggested by incorporating the effect of Pr and a new j correlation was suggested for each Pr.

Thermo-Flow Analysis of Offset-strip fins according to Prandtl Number (Plandtl 수에 따른 옵셋 스트립핀에서의 열 및 유동 분석)

  • Joo, Youn-Sik;Kim, Min-Soo;Lee, Kwan-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.233-238
    • /
    • 2008
  • This paper numerically investigates thermo-flow characteristics of offset strip fins to obtain a correlation between heat transfer and pressure drop. The flow was divided into three regimes, i.e. laminar, transition and turbulent. The predicted j and f values from the SST k-$\omega$ turbulence model agreed with previous correlations with the error less than 20% in transition and turbulent regimes. Heat transfer and pressure drop were predicted by varying Prandtl number from 0.5 to 40. The Prandtl number showed little effects on pressure drop but had great effect on the heat transfer characteristics. An overall correlation to predict j was suggested by incorporating the effect of Pr and a new j correlation was suggested for each Pr.

  • PDF

The sensitivity of ship resistance to wall-adjacent grids and near-wall treatments

  • Park, Dong Woo;Lee, Sang Bong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.683-691
    • /
    • 2018
  • Numerical simulations of turbulent flows around KCS have been performed to study the sensitivity of ship resistance to wall-adjacent grids and disclose the influence of near-wall treatment on the sensitivity of ship resistance. The resistance coefficients of viscous and pressure forces were compared when using realizable $k-{\varepsilon}$ and SST $k-{\omega}$ turbulence models in structured and unstructured grids, respectively. The calculation of friction velocity was found to be mainly responsible for the reduction of viscous and total resistances when the height of wall-adjacent cells increased. Since the assumption of equilibrium state between turbulent production and dissipation was not met in a bulbous bow, it was more reasonable to iteratively calculate the friction velocity from empirical laws of the wall for near-wall treatment rather than explicitly estimate it from the turbulent kinetic energy.

Evaluation of the Turbulence Models on the Aerodynamic Performance of Three-Dimensional Small-Size Axial Fan (3차원 소형축류홴의 공력특성에 대한 난류모델평가)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.13-20
    • /
    • 2014
  • The steady-state, incompressible and three-dimensional numerical analysis was carried out to evaluate turbulent models on the aerodynamic performance of a small-size axial fan(SSAF). The prediction performance on the static pressure of all turbulent models is going downhill at the high static pressure and low flowrate region, but has improved at the axial flow region. In consequence, all turbulent models predict the static pressure coefficient with an error performance less than about 4% after the region of the flowrate coefficient of about 0.14. Especially, the turbulent model of SST $k-{\omega}$ shows the best prediction performance equivalent to an error performance less than about 2% on the static pressure.

Virtual maneuvering test in CFD media in presence of free surface

  • Hajivand, Ahmad;Mousavizadegan, S. Hossein
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.540-558
    • /
    • 2015
  • Maneuvering oblique towing test is simulated in a Computational Fluid Dynamic (CFD) environment to obtain the linear and nonlinear velocity dependent damping coefficients for a DTMB 5512 model ship. The simulations are carried out in freely accessible OpenFOAM library with three different solvers, rasInterFoam, LTSInterFoam and interDyMFoam, and two turbulence models, $k-{\varepsilon}$ and SST $k-{\omega}$ in presence of free surface. Turning and zig-zag maneuvers are simulated for the DTMB 5512 model ship using the calculated damping coefficients with CFD. The comparison of simulated results with the available experimental shows a very good agreement among them.

Numerical Analysis of Effect of Baffles with 9 Diamond Type Holes on Flow Pattern (9개 다이아몬드형 구멍이 설치된 배플이 유동 양상에 미치는 효과에 대한 수치해석)

  • Ary, B.K.P;Ahn, S.W.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.32-38
    • /
    • 2011
  • 2개의 경사 배플을 가진 사각 채널내의 열전달과 유동양상에 특성을 조사하기 위해 수치해석을 행하였다. 본 연구에서는 바닥에서만 가열된 채널 내 2개의 배플에 9개의 다이아몬드형 구멍을 설치하였다. 배플은 19.8 cm의 폭과 23.2 cm의 길이 그리고 0.5 cm의 두께의 플렉시 글라스를 사용하였다. 다이아몬드형 구멍의 크기는 $2.55\;cm{\times}2.55\;cm$이며 배플 경사각은 $5^{\circ}$를 유지하였다. 레이놀즈수의 범위는 23,000에서 57,000 이다. SST k-${\omega}$ 난류모델을 사용하였다. 누셀트(Nu) 수의 수치해석 결과는 실험 결과로 검증하였다. 유동장에 관한 수치해석으로부터 배플 구멍 근처의 유동 양상을 나타낼 수 있었고 이러한 유동장이 온도장의 특징에 크게 영향을 미친다는 것을 나타내었다. 국부 누셀트수는$x/D_h$=2.5 에서 최대가 되었다.

A Computational Study of Aerodynamic Characteristics of Spinning Sphere (회전하는 구의 공력특성에 수치해석적 연구)

  • Deshpande, S.V.;Lee, Y.K.;Kim, H.D.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.223-226
    • /
    • 2006
  • Computational Study of a sphere subjected to free stream flow and simultaneously subjected to spinning motion is carried out. Three dimensional compressible Navier-Stokes equations are solved using fully implicit finite volume scheme. SST(Shear Stress Transport) $k-{\omega}$ turbulence model is used. Aerodynamic characteristics being affected are studied. Validation of the numerical process is done for the no spin condition. Variation of drag coefficient and shock wave strength with increase in spinning rate is reported. Changes in the wake region of the sphere with respect to spinning speed are also observed.

  • PDF

Transonic flow past a Whitcomb airfoil with a deflected aileron

  • Kuzmin, Alexander
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.210-214
    • /
    • 2013
  • The sensitivity of transonic flow past a Whitcomb airfoil to deflections of an aileron is studied at free-stream Mach numbers from 0.81 to 0.86 and vanishing or negative angles of attack. Solutions of the Reynolds-averaged Navier-Stokes equations are obtained with a finite-volume solver using the $k-{\omega}$ SST turbulence model. The numerical study demonstrates the existence of narrow bands of the Mach number and aileron deflection angles that admit abrupt changes of the lift coefficient at small perturbations. In addition, computations reveal free-stream conditions in which the lift coefficient is independent of aileron deflections of up to 5 degrees. The anomalous behavior of the lift is explained by interplay of local supersonic regions on the airfoil. Both stationary and impulse changes of the aileron position are considered.

Flow Analysis and Performance Evaluation of a Ventilation Axial-Flow Fan Depending on the Position of Motor (환기용 축류송풍기의 유동해석 및 모터 위치에 따른 성능 특성 연구)

  • Kim, Jae-Woo;Kim, Jin-Hyuk;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.25-30
    • /
    • 2010
  • Flow analysis and performa nce evaluation have been performed for a ventilation axial-flow fan with different positions of the motor. Two different positions of motor have been tested; one is in front of the impeller and the other is behind the impeller. Flow analyses are performed by solving three-dimensional Reynolds-averaged Navier-Stokes equations through a finite-volume solver. Preliminary numerical calculations are carried out to test the performances of different turbulence models, i.e., SST model, k-$\omega$ model, and k-$\varepsilon$ model with and without using empirical wall function in the flow analysis. The validation of numerical analyses has been performed in comparison with the experimental data. The numerical results for the performance characteristics of the ventilation axial-flow fan with two different positions of the motor have been presented.

Parametric Numerical Study on the Performance of Helical Tidal Stream Turbines (헬리컬 터빈의 설계인자에 따른 성능 연구)

  • Han, Jun-Sun;Choi, Da-Hye;Hyun, Beom-Soo;Kim, Moon-Chan;Rhee, Shin-Hyung;Song, Mu-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.114-120
    • /
    • 2011
  • The characteristics of a helical turbine to be used for tidal stream energy conversion have been numerically studied with varying a few design parameters. The helical turbines were proposed aiming at mitgating the well known poor cut-in characteristics and the structural vibration caused by the fluctuating torque, and the basic concept is introducing some twisting angle of the vertical blade along the rotation axis of the turbine. Among many potential controling parameters, we focused, in this paper, on the twisting angle and the height to diameter ratio of the turbine, and, based on the numerical experiment, We tried to propose a configuration of such turbine for which better performance can be expected. The three-dimensional unsteady RANS equations were solved by using the commercial CFD software, FLUENT with k-${\omega}$ SST turbulence model, and the grid was generated by GAMBIT. It is shown that there are a range of the twisting angle producing better efficiency with less vibration and the minimum height to diameter ratio above which the efficiency does not improve considerably.