• Title/Summary/Keyword: k-Omega SST

Search Result 145, Processing Time 0.026 seconds

A numerical study on the correlation between the evolution of propeller trailing vortex wake and skew of propellers

  • Wang, Lian-Zhou;Guo, Chun-Yu;Su, Yu-Min;Wu, Tie-Cheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.212-224
    • /
    • 2018
  • The characteristics of the relationship between the evolution of propeller trailing vortex wake and skew angle are numerically examined based on four different five-blade David Taylor Model Basin (DTMB) model propellers with different skew angles. Numerical simulations are based on Reynolds-averaged Naviere-Stokes (RANS) equations combined with SST $k-{\omega}$ turbulence model. Results show that the contraction of propeller trailing vortex wake can be restrained by increasing skew angle and loading conditions, and root vortices fade away when the propeller skew angle increases. With the increase of the propeller's skew angle, the deformation of the hub vortex and destabilization of the tip vortices are weakening gradually because the blade-to-blade interaction becomes weaker. The transition trailing vortex wake from stability to instability is restrained when the skew increases. Furthermore, analyses of tip vortice trajectories show that the increasing skew can reduce the difference in trailing vortex wake contraction under different loading conditions.

Numerical visualization of mixing in a circular chamber by two opposite impinging jets (반대방향 충돌제트에 의한 원형 챔버 내 혼합거동에 대한 전산가시화)

  • Karbasian, Hamidreza;Kim, Youngwoo;Lee, In Bum;Han, Beom Jeong;Jeong, Yong Chai;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.3
    • /
    • pp.32-37
    • /
    • 2016
  • In this study, the mixing process of two distinct flow is numerically investigated. Two flow with different physical properties (resin and hardener) are mixed through the opposing mixing jets. At a high pressure mixing process, the high speed flow is provided by two in-line nozzles. In the case of numerical modeling, Reynolds-Averaged Navier-Stokes Equations (RANS) is conducted to model the flow pattern inside the chamber. Additionally, SST k-omega turbulence model is selected to predict the kinetic energy of flow in impingement zone. The results show that mixing of two distinct flows would be efficient if the velocity of jet is high enough and nozzle diameter is a predominant parameter. Also, this velocity would create higher shear stress between two distinct flows which increases the mixing quality as well as strength of formed vortices. Eventually, the histogram of concentration fraction of resin is examined in order to show the quality of mixing and the range of concentration fractions in the output of chamber.

A Numerical Study on Heat Transfer and Friction in Rectangular Channel with Inclined Perforated Baffles

  • Putra, Ary Bachtiar Krishna;Ahn, Soo-Whan;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1003-1012
    • /
    • 2008
  • A three dimensional numerical study has been applied to predict the turbulent fluid flow and heat transfer characteristics for the rectangular channel with different types of baffles. Four different types of the baffles are used. The inclined baffles have the width of 19.8 cm, the square diamond type hole having one side length of 2.55 cm, and the inclination angle of $5^{\circ}$. Reynolds number is varied between 23,000 and 57,000. The SST k-${\omega}$ turbulence model is used in the present numerical study. The validity of the numerical results is examined with the experimental data. The numerical results of the flow field depict that the flow patterns around the different baffle type are entirely different and it significantly affects the local heat transfer characteristics. The heat transfer and friction factor depend significantly on the number of baffle holes. It is found that the heat transfer enhancement of baffle type II (3 hole baffle) has the best values.

PREDICTION OF AERODYNAMIC PERFORMANCE LOSS OF A WIND TURBINE BLADE SECTION DUE TO CONTAMINANT ACCUMULATION (외부 오염물 증착에 의한 풍력 터빈 날개 단면의 공력 성능 저하 예측)

  • Yang, T.H.;Choi, J.H.;Yu, D.O.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.91-97
    • /
    • 2013
  • In the present study, the effects of contaminant accumulation and surface roughness on the aerodynamic performance of wind turbine blade sections were numerically investigated by using a flow solver based on unstructured meshes. The turbulent flow over the rough surface was modeled by a modified ${\kappa}-{\omega}$ SST turbulence model. The calculations were made for the NREL S809 airfoil with varying contaminant sizes and positions at several angles of attack. It was found that as the contaminant size increases, the degradation of the airfoil performance becomes more significant, and this trend is further amplified near the stall condition. When the contaminant is located at the upper surface near the leading edge, the loss in the aerodynamic performance of the blade section becomes more critical. It was also found that the surface roughness leads to a significant reduction of lift, in addition to increased drag.

Study on the Resultant Vorticity Numerical Model of the Propeller Wake (프로펠러 후류의 총와도 수식모델 연구)

  • Park, Hui-Seung;Yoon, Hyun-Sik;Kim, Moon-Chan;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.141-146
    • /
    • 2011
  • This study numerically carried out the propeller open water test(POW) by solving Navier-Stokes equations governing the three-dimensional unsteady incompressible viscous flow with the turbulence closure model of the ${\kappa}-{\omega}$ SST model. Numerical simulations are performed at various range of advance ratios. Corresponding to Reynolds numbers of $5.89{\times}105{\sim}6.47{\times}105$ based on free stream velocity and the chord length at 0.7 propeller radius. The present results give a good agreement with those of the experiment. The propeller induced vortical structures have been analyzed by visualizing the resultant vorticity. As the advance ratio increases, the magnitude and length of the resultant vorticity decrease significantly. As the main focus of present study, the numerical model to present the ($r-{\theta}$) plane-averaged resultant vorticity along the streamwise direction for various advance ratios has been suggested.

ASSESSMENT OF THE TiO2/WATER NANOFLUID EFFECTS ON HEAT TRANSFER CHARACTERISTICS IN VVER-1000 NUCLEAR REACTOR USING CFD MODELING

  • MOUSAVIZADEH, SEYED MOHAMMAD;ANSARIFAR, GHOLAM REZA;TALEBI, MANSOUR
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.814-826
    • /
    • 2015
  • The most important advantage of nanoparticles is the increased thermal conductivity coefficient and convection heat transfer coefficient so that, as a result of using a 1.5% volume concentration of nanoparticles, the thermal conductivity coefficient would increase by about twice. In this paper, the effects of a nanofluid ($TiO_2$/water) on heat transfer characteristics such as the thermal conductivity coefficient, heat transfer coefficient, fuel clad, and fuel center temperatures in a VVER-1000 nuclear reactor are investigated. To this end, the cell equivalent of a fuel rod and its surrounding coolant fluid were obtained in the hexagonal fuel assembly of a VVER-1000 reactor. Then, a fuel rod was simulated in the hot channel using Computational Fluid Dynamics (CFD) simulation codes and thermohydraulic calculations (maximum fuel temperature, fluid outlet, Minimum Departure from Nucleate Boiling Ratio (MDNBR), etc.) were performed and compared with a VVER-1000 reactor without nanoparticles. One of the most important results of the analysis was that heat transfer and the thermal conductivity coefficient increased, and usage of the nanofluid reduced MDNBR.

A study on Flow Characteristics of the Semi-Circular inlet S-Shaped Intake at Various Angle of Incidence (입사각에 따른 반원형 입구형상 S-Shaped Intake에 대한 유동특성 연구)

  • Lee, Jihyeong;Cho, Jinsoo
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.27-32
    • /
    • 2015
  • Air intakes are an essential component of aircraft engines. They are mainly used to offer uniform airflows to engine faces. Fighter aircraft have to mask the engine face inside the fuselage in order to reduce the Radar Cross Section(RCS). Therefore, offset intakes like a S-Duct are one of promising components for this purpose. During a fight, it is unavoidable that the flow will enter the intakes at some face angles other than zero. In this case, the performance of the aircraft engine will be influenced to the angle of incidence. In this study, the CFD analysis of the semi-circular S-Duct with AR(0.5,0) is performed to investigate the influence of the angle of incidence on the performance of the S-Duct using a distortion coefficient. To consider the adverse pressure gradient, a $k-{\omega}$ SST turbulence model is employed. The secondary flow and flow separation are observed for all computational cases. It is found that the positive incidence angle produces the best performances.

Performance Enhancement of a Low Speed Axial Compressor Utilizing Simultaneous Tip Injection and Casing Treatment of Groove Type

  • Taghavi-Zenouz, Reza;Behbahani, Mohammad Hosein Ababaf
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.91-98
    • /
    • 2017
  • Performance of a low speed axial compressor is enhanced through a proper configuration of blade row tip injection and casing treatment of groove type. Air injectors were mounted evenly spaced upstream of the blade row within the casing groove and were all aligned parallel to the compressor axis. The groove, which covers all the blade tip chord length, extends all-round the casing circumference. Method of investigation is based on solution of the unsteady form of the Navier-Stokes equations utilizing $k-{\omega}$ SST turbulence model. Extensive parametric studies have been carried out to explore effects of injectors' flow momentums and yaw angles on compressor performance, while being run at different throttle valve setting. Emphasis has been focused on situations near to stall condition. Unsteady numerical analyses for untreated casing and no-injection case for near stall condition provided to discover two well-known criteria for spike stall inception, i.e., blade leading edge spillage and trailing edge back-flow. Final results showed that with only 6 injectors mounted axially in the casing groove and at yaw angle of 15 degrees opposite the direction of the blade row rotation, with a total mass flow rate of only 0.5% of the compressor main flow, surprisingly, the stall margin improves by 15.5%.

CFD prediction and simulation of a pumpjet propulsor

  • Lu, Lin;Pan, Guang;Sahoo, Prasanta K.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.110-116
    • /
    • 2016
  • In this study an attempt has been made to study the hydrodynamic performance of pumpjet propulsor. Numerical investigation based on the Reynolds Averaged NaviereStokes (RANS) computational fluid dynamics (CFD) method has been carried out. The structured grid and SST ${\kappa}-{\omega}$ turbulence model have been applied. The numerical simulations of open water performance of marine propeller E779A are carried out with different advance ratios to verify the numerical simulation method. Results show that the thrust and the torque are in good agreements with experimental data. The grid independent inspection is applied to verify accuracy of numerical simulation grid. The numerical predictions of hydrodynamic performance of pumpjet propulsor are carried out with different advance ratios. Results indicate that the rotor provides the main thrust of propulsor and the balance performance of propulsor is generally satisfactory. Additionally, the curve of propulsor efficiency is in good agreement with experimental data. Furthermore, the pressure distributions around rotor and stator blades are reasonable. Beyond that, the existence of tip clearance accounts for the appearance of tip vortex that leads to a further loss in efficiency and a probability of cavitation phenomenon.

THE COMPARISON OF PIFS AND HEAT TRANSFER WITH BASE CONFIGURATIONS (기저 형상에 따른 PIFS 및 열전달 비교 연구)

  • Kim, J.G.;Lee, J.W.;Kim, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.195-200
    • /
    • 2010
  • Numerical investigation was conducted to study the effects of after-body configurations and nozzle lip on the PIFS(Plume Induced Flow Separation) and eat flux to the base face. Two dimensional and axi-symmetric non-equilibrium Navier-Stoke's solver with $k-{\omega}$ SST turbulence model was used to solve the launching vehicle type configuration with propulsive jet. The experimental result of Robert J. McGhee was compared with our computational results for code validation. Three types of the after-body configurations (Straight, Boat-tail, Flare type) were simulated for this study. And the nozzle lip effect was studies using the three types of base configurations same simulation conditions. As a result of numerical investigations, higher pressure ratio condition and boat-tail after-body configuration caused severe PIFS phenomenon but the flare type after-body configuration and low pressure ratio suppressed PIFS. Flare type after-body configuration and low pressure ratio case reduced heat flux to base face. The nozzle lip dispersed the heat flux widely along the base face and the nozzle lip.

  • PDF