분류란 새로운 자료를 주어진 클래스 중의 하나로 구분하는 것으로 가장 일반적으로 사용되는 데이터마이닝 기법 중의 하나이다. 그중 메모리기반 추론(MBR : Memory-Based Reasoning)은 추론 규칙 없이 특징들의 최초의 벡터 형태에 의해 표현된 학습패턴을 단순히 저장한다. 그리고 분류 시에 새로운 자료가 메모리에 저장된 학습패턴들과의 거리를 계산하여 가장 가까운 거리에 있는 학습패턴의 클래스로 분류하는 기법이다. MBR 기법에서 학습패턴이 커지면 저장에 필요한 메모리의 크기도 커질 뿐만 아니라 추론을 위한 계산도 많아지는 문제점을 가지고 있다. 이러한 문제를 해결하기 위한 대표적인 방법으로 초월평면을 이용하는 NGE 이론과 대표패턴을 추출하여 학습하는 FPA 기법과 RPA 기법 등을 들을 수 있다. 본 논문에서는 학습패턴 공간을 GINI-Index값을 이용하여 일련의 최적 분할점을 찾아 가변크기로 분할하는 동적분할평균(DPA : Dynamic Partition Averaging)기법을 제안하였다. 제안한 기법의 성능을 검증하기 위하여 MBR기법 중 널리 사용되는 k-NN 기법과 비교하였다. 제안한 기법이 k-NN기법에 비해 대표패턴 개수는 줄이고 분류성능은 유사하게 유지시킨 것을 보여주었다. 또한, 제안한 기법은 NGE 이론을 구현한 EACH 시스템과 대표패턴 기법인 FPA기법과 RPA기법 등과 비교하여 탁월한 분류 성능을 보여주었다.
문헌범주화에서는 학습문헌집합에 부여된 주제범주의 정확성이 일정 수준을 가진다고 가정한다. 그러나, 이는 실제 문헌집단에 대한 지식이 없이 이루어진 가정이다. 본 연구는 실제 문헌집단에서 기 부여된 주제범주의 정확성의 수준을 알아보고, 학습문헌집합에 기 부여된 주제범주의 정확도와 문헌범주화 성능과의 관계를 확인하려고 시도하였다. 특히, 학습문헌집합에 부여된 주제범주의 질을 수작업 재색인을 통하여 향상시킴으로써 어느 정도까지 범주화 성능을 향상시킬 수 있는가를 파악하고자 하였다. 이를 위하여 과학기술분야의 1,150 초록 레코드 1,150건을 전문가 집단을 활용하여 재색인한 후, 15개의 중복문헌을 제거하고 907개의 학습문헌집합과 227개의 실험문헌집합으로 나누었다. 이들을 초기문헌집단, Recat-1, Recat-2의 재 색인 이전과 이후 문헌집단의 범주화 성능을 kNN 분류기를 이용하여 비교하였다. 초기문헌집단의 범주부여 평균 정확성은 16%였으며, 이 문헌집단의 범주화 성능은 $F_1$값으로 17%였다. 반면, 주제범주의 정확성을 향상시킨 Recat-1 집단은 $F_1$값 61%로 초기문헌집단의 성능을 3.6배나 향상시켰다.
자질 수가 적은 소규모 크기 문서들의 자동분류는 좋은 성능을 얻기 어렵다. 그 이유는 문서집단 전체의 자질 수는 크지만 단위 문서 내 자질 수가 상대적으로 너무 적기 때문에 문서간 유사도가 너무 낮아 우수한 분류 알고리즘을 적용해도 좋은 성능을 얻지 못한다. 특히 웹 디렉토리 문서들의 자동분류에서나, 디스크 복구 작업에서 유사도 평가와 자동분류로 연결되지 않은 섹터를 연결하는 작업에서와 같은 소규모 크기 문서의 자동분류에서는 좋은 성능을 얻지 못한다. 따라서 본 논문에서는 소규모 크기 문서의 자동분류에서의 문제점을 해결하기 위해 분류 사전작업으로, 예제기반 자질 필터링 방법 Relief-F알고리즘을 소규모 문서 내 자질 필터링에 적합한 ERelief-F 알고리즘을 제시한다. 또 비교 실험을 위해, 기존의 자질 필터링 방법 중 Odds Ratio와 정보이득, 또 Relief-F 알고리즘을 함께 실험하여 분류결과를 비교하였다. 그 결과, ERelief-F 알고리즘을 사용했을 때의 결과가 정보이득과 Odds Ratio, Relief-F보다 월등히 우수한 성능을 보였고 부적절한 자질도 많이 줄일 수 있었다.
본 논문에서는 영상처리와 기계학습을 이용하여 자동차를 판별하는 시스템을 제안하고 그 성능을 확인한다. 차량의 앞면을 인식 하도록 하였으며 앞면을 선택한 이유는 제조사, 모델별로 앞면이 다르고 개조가 힘들기 때문이다. 제안하는 방법은 먼저 학습 데이터로부터 HOG특징을 추출하고, 이 특징 데이터에 대해 인공신경망 학습기법을 적용하여 판별 모델을 구축한다. 그리고 사용자가 자동차의 앞면을 찍으면 그 사진에서 특징점을 추출하고 특징점을 학습된 판별 모델을 거쳐 차량의 정보를 표시한다. 실험 결과, 98%의 높은 평균 인식률을 보였다.
터빈 사이클의 성능 상태량을 결정하기 위한 보정 열 성능 분석은 발전소의 향상된 경제성 운전을 위해 요구된다. 본 연구에서는 유용하고 정확한 성능 분석을 위해서 산업 표준인 ASME PTC를 기분으로 하여 성능 데이터를 사용하여 주급수 유량의 영역별 판정 알고리듬을 개발하고 각 영역별 추정 알고리즘을 개발하였다. 추정 알고리즘은 측정 상태량의 상관관계를 기반으로 형상 분류를 제시하고, 이를 기반으로 서포트 벡터 머신 모델링을 이용하여 추정 모델을 구성하였으며, 서포트 벡터 머신 모델링의 우수성을 검증하기 위하여 신경 회로망 모델, 커널 회귀 모델과 비교하였다. 주급수 유량의 형상 분류 및 추정 모델은 터빈 사이클에서 정확한 보정 열 성능 분석을 제공함으로써 향상된 성능 분석에 기여할 것이다.
이 연구에서는 자료변환기법을 이용해 추출된 여러 특징과 다양한 분류방법론을 결합하여 다중시기 SAR 자료를 위한 새로운 토지피복 분류기법을 제안하였다. 먼저, 다중시기 SAR 자료로부터 원본자료와는 다른 새로운 정보를 추출하기 위해 주성분분석과 3차원 웨이블렛 변환을 이용한 자료변환을 수행하였다. 그리고 나서 최대우도법 분류자, 신경망, support vector machine을 포함한 세 가지 다른 분류자를 변환된 특징자료들과 원본 후방산란계수 자료를 포함한 세가지 자료에 적용하여 다양한 초기 분류 결과를 얻도록 한다. 이후 다수결규칙을 통해 모든 초기결과를 결합하여 최종 분류 결과를 생성하게 된다. 다중시기 ENVISAT ASAR 자료를 이용한 사례연구에서 모든 초기 결과는 사용한 특징자료와 분류자의 종류에 따라 매우 다양한 분류정확도를 보였다. 이러한 9개의 초기 분류 결과를 결합한 최종 분류 결과는 가장 높은 분류 정확도를 보여주고 있는데, 이는 각 초기 분류 결과가 토지피복을 결정하기 위한 상호 보완적인 정보를 제공하기 때문이다. 이 연구에서의 분류정확도 향상은 주로 자료변환을 통해 얻어진 각기 다른 특징자료와 다른 분류자를 결합에 의한 다양성 확보에서 기인한다. 그러므로 이 연구에서 제안한 토지피복 분류방법론은 다중시기 SAR자료의 분류에 효과적으로 적용가능하며, 또한 다중센서 원격탐사 자료융합으로 확장이 가능하다.
A model that precisely forecasts how much wind power is generated is critical for making decisions on power generation and infrastructure updates. Existing studies have estimated wind power from wind speed using forecasting models such as ANFIS, SMO, k-NN, and ANN. This study applies a projected clustering technique to identify wind power patterns of wind turbines; profiles the resulting characteristics; and defines hourly and daily power patterns using wind power data collected over a year-long period. A wind power pattern prediction stage uses a time interval feature that is essential for producing representative patterns through a projected clustering technique along with the existing temperature and wind direction from the classifier input. During this stage, this feature is applied to the wind speed, which is the most significant input of a forecasting model. As the test results show, nine hourly power patterns and seven daily power patterns are produced with respect to the Korean wind turbines used in this study. As a result of forecasting the hourly and daily power patterns using the temperature, wind direction, and time interval features for the wind speed, the ANFIS and SMO models show an excellent performance.
When analyzing default predictions in real estate companies, the number of non-defaulted cases always greatly exceeds the defaulted ones, which creates the two-class imbalance problem. This lowers the ability of prediction models to distinguish the default sample. In order to avoid this sample selection bias and to improve the prediction model, this paper applies a minority sample generation approach to create new minority samples. The logistic regression, support vector machine (SVM) classification, and neural network (NN) classification use an imbalanced dataset. They were used as benchmarks with a single prediction model that used a balanced dataset corrected by the minority samples generation approach. Instead of using prediction-oriented tests and the overall accuracy, the true positive rate (TPR), the true negative rate (TNR), G-mean, and F-score are used to measure the performance of default prediction models for imbalanced dataset. In this paper, we describe an empirical experiment that used a sampling of 14 default and 315 non-default listed real estate companies in China and report that most results using single prediction models with a balanced dataset generated better results than an imbalanced dataset.
기존 웹 페이지 자동분류 연구는 일반적으로 학습 기반인 kNN(k-Nearest Neighbor), SVM(Support Vector Machine)과 통계 기반인 Bayesian classifier, NNA(Neural Network Algorithm)등 여러 종류의 분류작업에서 입증된 분류 기법을 사용하여 웹 페이지를 분류하였다. 하지만 인터넷 상의 방대한 양의 웹 페이지와 각 페이지로부터 나오는 많은 양의 자질들을 처리하기에는 공간적, 시간적 문제에 직면하게 된다. 그리고 분류 대상을 표현하기 위해 흔히 사용하는 단일(uni-gram) 자질 기반에서는 자질들 간의 관계 분석을 통해 자질에 정확한 의미를 부여하기 힘들다. 특히 본 논문의 분류 대상인 한글 웹 페이지의 자질인 한글 단어는 중의적인 의미를 가지는 경우가 많기 때문에 이러한 중의성이 분류 작업에 많은 영향을 미칠 수 있다. 잠재적 의미 분석 LSA(Latent Semantic Analysis) 분류기법은 선형 기법인 특이치 분해 SVD(Singular Value Decomposition)을 통해 행렬의 분해 및 차원 축소(dimension reduction)를 수행하여 대용량 데이터 집합의 분류를 효율적으로 수행하고, 또한 차원 축소를 통해 새로운 의미공간을 생성하여 자질들의 중의적 의미를 분석할 수 있으며 이 새로운 의미공간상에 분류 대상을 표현함으로써 분류 대상의 잠재적 의미를 분석할 수 있다. 하지만 LSA의 차원 축소는 전체 데이터의 표현 정도만을 고려할 뿐 분류하고자 하는 범주를 고려하지 않으며 또한 서로 다른 범주 간의 차별성을 고려하지 않기 때문에 축소된 차원 상에서 분류 시 서로 다른 범주 데이터간의 모호한 경계로 인해 안정된 분류 성능을 나타내지 못한다. 이에 본 논문은 새로운 의미공간(semantic space) 상에서 서로 다른 범주사이의 명확한 구분을 위한 특별한 차원 선택을 수행하여 최적의 차원 선택과 안정된 분류성능을 보이는 최적의 지도적 LSA을 소개한다. 제안한 지도적 LSA 방법은 기본 LSA 및 다른 지도적 LSA 방법들에 비해 저 차원 상에서 안정되고 더 높은 성능을 보였다. 또한 추가로 자질 생성 및 선택 시 불용어의 제거와 자질에 대한 가중치를 통계적인 학습을 통해 얻음으로써 더 높은 학습효과를 유도하였다.
본 논문에서는 분야 온톨로지 구축을 위하여 분야 상위 온톨로지를 구축한 다음, 분야 시소러스의 개념과 관계를 이용하여 분야 상위 온톨로지를 확장하는 방법을 제안한다. 이를 위하여 우선 일반분야 시소러스와 분야 사전을 이용하여 분야 상위 개념 분류체계를 구축한다. 다음, 분야 시소러스의 개념을 분야 상위 온톨로지의 상위 개념으로 분류하고, 광의어(Broader Term: BT)-협의어(Narrower Term: NT) 및 광의어-관련어(Related Term: RT) 사이의 관계를 분야 상위 온톨로지에서 정의한 의미관계로 분류한다. 개념 분류는 두 단계로 진행되는데, 1단계에서는 빈도수 기반 방법, 2단계에서는 유사도 기반방법을 적용하여 시소러스 개념을 분야 상위 온톨로지의 개념으로 분류한다. 관계 분류에서는 두 가지 방법을 적용하였는데, (i) 훈련데이타가 부족한 경우를 위하여 규칙기반 방법으로 BT-NT/RT관계를 iso와 기타 관계(non-isa관계)로 분류하고, 다시 패턴기반 방법으로 non-isa관계를 온톨로지를 위한 의미관계로 분류한다. (ii) 훈련데이타를 충분히 가지고 있을 경우, 최대 엔트로피 모델(MEM)을 적용한 특징기반 분류 기법을 사용하되, k-Nearest Neighbors(k-NN)방법으로 훈련데이타를 정제하였다. 본 논문에서 제안한 방법으로 시스템을 구축하였고, 실험 결과 사람에 의한 판단 결과와 비교 가능한 성능을 보여 주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.