• Title/Summary/Keyword: k-NN algorithm

Search Result 273, Processing Time 0.029 seconds

Fuzzy Kernel K-Nearest Neighbor Algorithm for Image Segmentation (영상 분할을 위한 퍼지 커널 K-nearest neighbor 알고리즘)

  • Choi Byung-In;Rhee Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.828-833
    • /
    • 2005
  • Kernel methods have shown to improve the performance of conventional linear classification algorithms for complex distributed data sets, as mapping the data in input space into a higher dimensional feature space(7). In this paper, we propose a fuzzy kernel K-nearest neighbor(fuzzy kernel K-NN) algorithm, which applies the distance measure in feature space based on kernel functions to the fuzzy K-nearest neighbor(fuzzy K-NN) algorithm. In doing so, the proposed algorithm can enhance the Performance of the conventional algorithm, by choosing an appropriate kernel function. Results on several data sets and segmentation results for real images are given to show the validity of our proposed algorithm.

Design of Case-based Intelligent Wheelchair Monitoring System

  • Kim, Tae Yeun;Seo, Dae Woong;Bae, Sang Hyun
    • Journal of Integrative Natural Science
    • /
    • v.10 no.3
    • /
    • pp.162-170
    • /
    • 2017
  • In this paper, it is aim to implement a wheelchair monitoring system that provides users with customized medical services easily in everyday life, together with mobility guarantee, which is the most basic requirement of the elderly and disabled persons with physical disabilities. The case-based intelligent wheelchair monitoring system proposed in this study is based on a case-based k-NN algorithm, which implements a system for constructing and inferring examples of various biometric and environmental information of wheelchair users as a knowledge database and a monitoring interface for wheelchair users. In order to confirm the usefulness of the case-based k-NN algorithm, the SVM algorithm showed an average accuracy of 84.2% and the average accuracy of the proposed case-based k-NN algorithm was 86.2% And showed higher performance in terms of accuracy. The system implemented in this paper has the advantage of measuring biometric information and data communication regardless of time and place and it can provide customized service of wheelchair user through user friendly interface.

Feature Selection for Multiple K-Nearest Neighbor classifiers using GAVaPS (GAVaPS를 이용한 다수 K-Nearest Neighbor classifier들의 Feature 선택)

  • Lee, Hee-Sung;Lee, Jae-Hun;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.871-875
    • /
    • 2008
  • This paper deals with the feature selection for multiple k-nearest neighbor (k-NN) classifiers using Genetic Algorithm with Varying reputation Size (GAVaPS). Because we use multiple k-NN classifiers, the feature selection problem for them is vary hard and has large search region. To solve this problem, we employ the GAVaPS which outperforms comparison with simple genetic algorithm (SGA). Further, we propose the efficient combining method for multiple k-NN classifiers using GAVaPS. Experiments are performed to demonstrate the efficiency of the proposed method.

Neural network based model for seismic assessment of existing RC buildings

  • Caglar, Naci;Garip, Zehra Sule
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.229-241
    • /
    • 2013
  • The objective of this study is to reveal the sufficiency of neural networks (NN) as a securer, quicker, more robust and reliable method to be used in seismic assessment of existing reinforced concrete buildings. The NN based approach is applied as an alternative method to determine the seismic performance of each existing RC buildings, in terms of damage level. In the application of the NN, a multilayer perceptron (MLP) with a back-propagation (BP) algorithm is employed using a scaled conjugate gradient. NN based model wasd eveloped, trained and tested through a based MATLAB program. The database of this model was developed by using a statistical procedure called P25 method. The NN based model was also proved by verification set constituting of real existing RC buildings exposed to 2003 Bingol earthquake. It is demonstrated that the NN based approach is highly successful and can be used as an alternative method to determine the seismic performance of each existing RC buildings.

Density Adaptive Grid-based k-Nearest Neighbor Regression Model for Large Dataset (대용량 자료에 대한 밀도 적응 격자 기반의 k-NN 회귀 모형)

  • Liu, Yiqi;Uk, Jung
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.2
    • /
    • pp.201-211
    • /
    • 2021
  • Purpose: This paper proposes a density adaptive grid algorithm for the k-NN regression model to reduce the computation time for large datasets without significant prediction accuracy loss. Methods: The proposed method utilizes the concept of the grid with centroid to reduce the number of reference data points so that the required computation time is much reduced. Since the grid generation process in this paper is based on quantiles of original variables, the proposed method can fully reflect the density information of the original reference data set. Results: Using five real-life datasets, the proposed k-NN regression model is compared with the original k-NN regression model. The results show that the proposed density adaptive grid-based k-NN regression model is superior to the original k-NN regression in terms of data reduction ratio and time efficiency ratio, and provides a similar prediction error if the appropriate number of grids is selected. Conclusion: The proposed density adaptive grid algorithm for the k-NN regression model is a simple and effective model which can help avoid a large loss of prediction accuracy with faster execution speed and fewer memory requirements during the testing phase.

A Modified Fuzzy k-NN Algorithm for Identifying Database Workloads (데이터베이스 워크로드 식별을 위한 수정된 퍼지 k-NN 알고리즘)

  • Oh, Jeong-Seok;Lee, Sang-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.70-72
    • /
    • 2005
  • 데이터베이스 관리자는 효과적인 데이터베이스 관리를 위해 워크로드 특성을 잘 알아야 한다. 워크로드 특성은 데이터베이스 응용분야에 따라 다르며, 데이터베이스 환경에서 하나 이상의 응용 분야가 수행될 수 있다. 복합적인 데이터베이스 응용 분야 때문에, 관리자가 데이터베이스 시스템에서 발생하는 워크로드를 식별하기가 더욱 어려워졌다. 복합적인 데이터베이스 응용 분야의 효과적인 데이터베이스 관리를 수행하기 위해 워크로드를 식별할 수 있는 방법이 요구된다. 이를 위해, 본 연구는 TPC-C와 TPC-W 성능평가의 워크로드와 두 성능평가의 혼합된 워크로드들을 생성하여 워크로드 식별을 수행하였다. 워크로드 식별은 퍼지 k-NN 알고리즘을 수정하여 진행하였다. 수정된 k-NN 알고리즘은 혼합 비율에 따라 시험 워크로드 데이터와 훈련 워크로드 데이터간의 워크로드 식별 실험에 사용되었고, 분류를 위한 k-NN, 퍼지 k-NN, 분산 가중치 퍼지 k-NN 알고리즘의 결과와 비교되었다. 수정된 k-NN 알고리즘은 다른 알고리즘보다 k 인자에 따른 변동과 오차율이 감소하여 워크로드 식별에 더 적합함을 보였다. 본 논문의 결과는 복합된 데이터베이스 응용 분야의 특성을 보이는 데이터베이스 환경에서 워크로드 식별 정보를 창조하여 융통성 있는 튜닝 기법을 고려하는데 기여한다.

  • PDF

Evaluation of Geotechnical Parameters Based on the Design of Optimal Neural Network Structure (최적의 인공신경망 구조 설계를 통한 지반 물성치 추정)

  • Park Hyun-Il;Hwang Dae-Jin;Kweon Gi-Chul;Lee Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.25-34
    • /
    • 2005
  • This paper proposes a selection methodology composed of neural network (NN) and genetic algorithm (GA) to design optimal NN structure. We combine the characteristics of GA and NN to reduce the computational complexity of artificial intelligence applications and increase the precision of NN' prediction in the design of NN structure. Genetic selection approach of design parameters of NN is introduced to obtain optimal NN structure. Analyzed results for geotechnical problems are given to evaluate the performance of the proposed hybrid methodology.

Research on Fault Diagnosis of Wind Power Generator Blade Based on SC-SMOTE and kNN

  • Peng, Cheng;Chen, Qing;Zhang, Longxin;Wan, Lanjun;Yuan, Xinpan
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.870-881
    • /
    • 2020
  • Because SCADA monitoring data of wind turbines are large and fast changing, the unbalanced proportion of data in various working conditions makes it difficult to process fault feature data. The existing methods mainly introduce new and non-repeating instances by interpolating adjacent minority samples. In order to overcome the shortcomings of these methods which does not consider boundary conditions in balancing data, an improved over-sampling balancing algorithm SC-SMOTE (safe circle synthetic minority oversampling technology) is proposed to optimize data sets. Then, for the balanced data sets, a fault diagnosis method based on improved k-nearest neighbors (kNN) classification for wind turbine blade icing is adopted. Compared with the SMOTE algorithm, the experimental results show that the method is effective in the diagnosis of fan blade icing fault and improves the accuracy of diagnosis.

Estimation of Aboveground Biomass Carbon Stock Using Landsat TM and Ratio Images - $k$NN algorithm and Regression Model Priority (Landsat TM 위성영상과 비율영상을 적용한 지상부 탄소 저장량 추정 - $k$NN 알고리즘 및 회귀 모델을 중점적으로)

  • Yoo, Su-Hong;Heo, Joon;Jung, Jae-Hoon;Han, Soo-Hee;Kim, Kyoung-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.39-48
    • /
    • 2011
  • Global warming causes the climate change and makes severe damage to ecosystem and civilization Carbon dioxide greatly contributes to global warming, thus many studies have been conducted to estimate the forest biomass carbon stock as an important carbon storage. However, more studies are required for the selection and use of technique and remotely sensed data suitable for the carbon stock estimation in Korea In this study, the aboveground forest biomass carbon stocks of Danyang-Gun in South Korea was estimated using $k$NN($k$-Nearest Neighbor) algorithm and regression model, then the results were compared. The Landsat TM and 5th NFI(National Forest Inventory) data were prepared, and ratio images, which are effective in topographic effect correction and distinction of forest biomass, were also used. Consequently, it was found that $k$NN algorithm was better than regression model to estimate the forest carbon stocks in Danyang-Gun, and there was no significant improvement in terms of accuracy for the use of ratio images.

Design and Performance Analysis of MapReduce-based kNN join Query Processing Algorithm (맵리듀스 기반 kNN join 질의처리 알고리즘의 설계 및 성능평가)

  • Kim, TaeHoon;Lee, HyunJo;Chang, JaeWoo
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.733-736
    • /
    • 2014
  • 최근 대용량 데이터에 대한 효율적인 데이터 분석 기법이 활발히 연구되고 있다. 대표적인 기법으로는 맵리듀스 환경에서 보로노이 다이어그램을 이용한 k 최근접점 조인(VkNN-join) 알고리즘이 존재한다. VkNN-join 알고리즘은 부분집합 Ri에 연관된 부분집합 Sj만을 후보탐색 영역으로 선정하여 질의를 처리하기 때문에 질의처리 시간을 감소시킨다. 그러나 VkNN-join은 색인 구축 비용이 높으며, kNN 연산 오버헤드가 큰 문제점이 존재한다. 이를 해결하기 위해, 본 논문에서는 대용량 데이터 분석을 위한 맵리듀스 기반 kNN join 질의처리 알고리즘을 제안한다. 제안하는 알고리즘은 시드 기반의 동적 분할을 통해 색인구조 구축비용을 감소시킨다. 또한 시드 간 평균 거리를 기반으로 후보 영역을 선정함으로써, 연산 오버헤드를 감소시킨다. 아울러, 성능 평가를 통해 제안하는 기법이 질의처리 시간 측면에서 기존 기법에 비해 우수함을 나타낸다.