• 제목/요약/키워드: k-NN algorithm

검색결과 273건 처리시간 0.032초

Courses Recommendation Algorithm Based On Performance Prediction In E-Learning

  • Koffi, Dagou Dangui Augustin Sylvain Legrand;Ouattara, Nouho;Mambe, Digrais Moise;Oumtanaga, Souleymane;ADJE, Assohoun
    • International Journal of Computer Science & Network Security
    • /
    • 제21권2호
    • /
    • pp.148-157
    • /
    • 2021
  • The effectiveness of recommendation systems depends on the performance of the algorithms with which these systems are designed. The quality of the algorithms themselves depends on the quality of the strategies with which they were designed. These strategies differ from author to author. Thus, designing a good recommendation system means implementing the good strategies. It's in this context that several research works have been proposed on various strategies applied to algorithms to meet the needs of recommendations. Researchers are trying indefinitely to address this objective of seeking the qualities of recommendation algorithms. In this paper, we propose a new algorithm for recommending learning items. Learner performance predictions and collaborative recommendation methods are used as strategies for this algorithm. The proposed performance prediction model is based on convolutional neural networks (CNN). The results of the performance predictions are used by the proposed recommendation algorithm. The results of the predictions obtained show the efficiency of Deep Learning compared to the k-nearest neighbor (k-NN) algorithm. The proposed recommendation algorithm improves the recommendations of the learners' learning items. This algorithm also has the particularity of dissuading learning items in the learner's profile that are deemed inadequate for his or her training.

시멘틱개념과 에지탐지 기반의 적응형 이미지 분류기법 (Adaptive Scene Classification based on Semantic Concepts and Edge Detection)

  • ;;김강석;강상길
    • 지능정보연구
    • /
    • 제15권2호
    • /
    • pp.1-13
    • /
    • 2009
  • 개념 기반 이미지풍경 분류 기법은 데이터베이스에 있는 대량의 이미지 를 카테고리별로 구분하는 많이 적용되는 응용분야이다. 풍경이 속하는 카테고리를 알면 데이터베이스에서 해변, 산, 숲, 필드와 같은 필요한 풍경사진을 찾고자 할 때 불필요한 이미지를 필터링하여 신속하고 정확하게 찾을 수 있다. 본 논문에서는 이미지 분류를 위한 시멘틱 모델링 기반의 적응 세그멘테이션 기법을 제안 한다. 잔디, 물, 하늘과 같은 시멘틱 개념에 따른 이미지를 서브구역으로 나누어 세그멘테이션을 한다. 세그멘테이션은 에지탐색을 이용하고 또한 K-Nearest(K-NN)를 이용하여 세그멘테이션을 한다. 세그멘테이션 과정에서 이미지의 복잡도에 따라 적응적으로 서브구역으로 나눈다. 실험에서는 Vosel과 schiele가 제안한 방법과의 비교를 통해서 정확도면에서 제안된 연구의 우수성을 보여준다.

  • PDF

신경회로망 PI자기동조를 이용한 BLDC 모터제어 (BLDC Motor Control using Neural Network PI Self tuning)

  • 배은경;권중동;전기영;함년근;이승환;이훈구;정춘병;한경희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.136-138
    • /
    • 2005
  • The conventional self-tuning methods have the speed control problem of nonlinear BLDC motor which can't adapt against any kinds of noise or operation circumstances. In this paper, supposed to solve these problem to PI parameters controller algorithm using ANN. In the proposed algorithm, the parameters of the controller were adjusted to reduce by on-line system the error of the speed of BLDC motor. In this process, EBPA NN was constituted to an output error value of a BLDC motor and conspired an input and output. The performance of the self-tuning controller is compared with that of the PI controller tuned by conventional method(Z&N). The effectiveness of the proposed control method IS verified thought the Matlab Simulink.

  • PDF

도로망에서 움직이는 k-최원접 이웃 질의를 위한 일괄 처리 알고리즘 (Batch Processing Algorithm for Moving k-Farthest Neighbor Queries in Road Networks)

  • 조형주
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.223-224
    • /
    • 2021
  • Recently, k-farthest neighbor (kFN) queries have not as much attention as k-nearest neighbor (kNN) queries. Therefore, this study considers moving k-farthest neighbor (MkFN) queries for spatial network databases. Given a positive integer k, a moving query point q, and a set of data points P, MkFN queries can constantly retrieve k data points that are farthest from the query point q. The challenge with processing MkFN queries in spatial networks is to avoid unnecessary or superfluous distance calculations between the query and associated data points. This study proposes a batch processing algorithm, called MOFA, to enable efficient processing of MkFN queries in spatial networks. MOFA aims to avoid dispensable distance computations based on the clustering of both query and data points. Moreover, a time complexity analysis is presented to clarify the effect of the clustering method on the query processing time. Extensive experiments using real-world roadmaps demonstrated the efficiency and scalability of the MOFA when compared with a conventional solution.

  • PDF

Human activity recognition with analysis of angles between skeletal joints using a RGB-depth sensor

  • Ince, Omer Faruk;Ince, Ibrahim Furkan;Yildirim, Mustafa Eren;Park, Jang Sik;Song, Jong Kwan;Yoon, Byung Woo
    • ETRI Journal
    • /
    • 제42권1호
    • /
    • pp.78-89
    • /
    • 2020
  • Human activity recognition (HAR) has become effective as a computer vision tool for video surveillance systems. In this paper, a novel biometric system that can detect human activities in 3D space is proposed. In order to implement HAR, joint angles obtained using an RGB-depth sensor are used as features. Because HAR is operated in the time domain, angle information is stored using the sliding kernel method. Haar-wavelet transform (HWT) is applied to preserve the information of the features before reducing the data dimension. Dimension reduction using an averaging algorithm is also applied to decrease the computational cost, which provides faster performance while maintaining high accuracy. Before the classification, a proposed thresholding method with inverse HWT is conducted to extract the final feature set. Finally, the K-nearest neighbor (k-NN) algorithm is used to recognize the activity with respect to the given data. The method compares favorably with the results using other machine learning algorithms.

안드로이드 OS에서 앱 설치 의사결정 지원을 위한 악성 앱 분류 시스템 (Malware Classification System to Support Decision Making of App Installation on Android OS)

  • 유홍렬;장윤;권태경
    • 정보과학회 논문지
    • /
    • 제42권12호
    • /
    • pp.1611-1622
    • /
    • 2015
  • 안드로이드 시스템은 권한 기반의 접근제어 기능을 제공하고, 사용자로 하여금 앱 설치시 앱이 가진 권한을 통해 설치여부를 판단하도록 요구하고 있지만, 대부분의 사용자는 이것을 무시하거나 모르고 지나치는 경향이 있다. 따라서 사용자가 이와 같은 중요한 단계에 주어진 역할을 직관적으로 수행할 수 있도록 하기 위한 개선된 방법이 필요하다. 본 논문에서는 퍼미션 기반 접근제어 시스템을 위해 사용자의 의사결정을 즉각 지원할 수 있는 새로운 기법을 기계학습에 기반하여 연구하고 제안한다. 구체적으로 K-최근접 이웃 알고리즘을 목적에 맞게 수정하여 악성앱 가능성 판단에 대한 연구를 진행하였으며, 특성으로 안드로이드의 권한 152개를 사용했다. 실험 결과 약 93.5%의 정확도를 보였으며 유사한 알고리즘, 혹은 특성으로 권한만을 사용한 기존의 연구결과에 비해 우수한 분류 결과를 보였다. 이는 K-최근접 이웃 알고리즘의 범주 선택시 가중합을 반영했기 때문이다. 본 연구결과는 사용자가 권한을 검토하고 설치할 때 의사결정에 도움을 줄 수 있을 것으로 기대된다.

이동 평균 기반 동적 시간 와핑 기법을 이용한 시계열 키워드 데이터의 분류 성능 개선 방안 (Enhancing Classification Performance of Temporal Keyword Data by Using Moving Average-based Dynamic Time Warping Method)

  • 정도헌
    • 정보관리학회지
    • /
    • 제36권4호
    • /
    • pp.83-105
    • /
    • 2019
  • 본 연구는 시계열 특성을 갖는 데이터의 패턴 유사도 비교를 통해 유사 추세를 보이는 키워드를 자동 분류하기 위한 효과적인 방법을 제안하는 것을 목표로 한다. 이를 위해 대량의 웹 뉴스 기사를 수집하고 키워드를 추출한 후 120개 구간을 갖는 시계열 데이터를 생성하였다. 제안한 모델의 성능 평가를 위한 테스트 셋을 구축하기 위해, 440개의 주요 키워드를 8종의 추세 유형에 따라 수작업으로 범주를 부여하였다. 본 연구에서는 시계열 분석에 널리 활용되는 동적 시간 와핑(DTW) 기법을 기반으로, 추세의 경향성을 잘 보여주는 이동평균(MA) 기법을 DTW에 추가 적용한 응용 모델인 MA-DTW를 제안하였다, 자동 분류 성능 평가를 위해 k-최근접 이웃(kNN) 알고리즘을 적용한 결과, ED와 DTW가 각각 마이크로 평균 F1 기준 48.2%와 66.6%의 최고 점수를 보인 데 비해, 제안 모델은 최고 74.3%의 식별 성능을 보여주었다. 종합 성능 평가를 통해 측정된 모든 지표에서, 제안 모델이 기존의 ED와 DTW에 비해 우수한 성능을 보임을 확인하였다.

신경회로망 PI자기동조를 이용한 PV발전시스템의 MPPT제어 (MPPT Control of Photovoltaic System using Neural Network PI Self Tuning)

  • 이재훈;김은기;김대균;이상집;오봉환;이훈구;김용주;한경희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.155-157
    • /
    • 2005
  • This paper shows how to design a MPPT control of PV system using neural network PI self tuning. The conventional self-tuning methods have the voltage control problem of nonlinear PV system which can't adapt against any kinds of noise or operation circumstances. In this paper, supposed to solve these problem to PI parameters controller algorithm using ANN. In the proposed algorithm, the parameters of the controller were adjusted to reduce by on-line system the error of the output voltage of DC-DC chopper. In this process, EBPA NN was constituted to an output error value of a DC-DC chopper and conspired an input and output. The performance of the self-tuning controller is compared with that of the PI controller tuned by conventional method. The effectiveness of the proposed control method is verified thought the Matlab Simulink.

  • PDF

NN-SV PWM을 이용한 IPMSM 드라이브의 고성능 속도제어 (High Performance Speed Control of IPMSM Drive Using Neural Network-SV PWM)

  • 김도연;고재섭;최정식;정철호;정병진;박기태;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.958-959
    • /
    • 2008
  • This paper is proposed a high performance speed control of the Interior Permanent Magnet Synchronous Motor through the Neural Network SV-PWM. SV-PWM is controlled using Neural Network control. SV-PWM can be maximum used maximum dc link voltage and is excellent control method due to characteristic to reducing harmonic more than others. Neural Network control has a advantage which can be robustly controlled. Simulation results are presented to show the validity of the proposed algorithm.

  • PDF

3상 일괄형 GIS 부분방전 진단 알고리즘 적용 및 평가 (Application and evaluation of PD diagnostic algorithm for 3-phase in one enclosure type GIS)

  • 김성일;최영찬;정승완;백병산;권중록;홍철용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1374-1375
    • /
    • 2008
  • 본 논문은 3상 일괄형 GIS의 부분방전 진단을 위해 새롭게 개발한 진단 알고리즘에 관한 것이다. 진단 알고리즘 개발을 위해, 먼저 실시간 부분방전 데이터를 행벡터 및 열벡터로 구성하고 각각의 벡터에서 통계 특징량 및 질감 특징량을 추출하였다. 다음으로 이들 특징량을 GA-NN(Genetic Algorithm - Neural Network) 학습에 적용하여 진단 알고리즘을 구성하였다. 또한 진단 알고리즘의 위상독립성은 부분방전 신호의 위상변화에 관계없이 진단결과가 일치하는 것을 확인함으로써 검증하였다. 개발한 진단알고리즘의 실증 평가를 위해, 부분방전이 발생되고 있는 국내 3상 일괄형 GIS 변전소에 적용하였다. 적용 결과, 위상에 관계없이 부분방전 발생원을 정확히 진단함을 확인하였고, 이를 통해 개발 알고리즘의 우수성을 입증하였다.

  • PDF