• Title/Summary/Keyword: k-NN분류

Search Result 191, Processing Time 0.035 seconds

Dynamic Emotion Classification through Facial Recognition (얼굴 인식을 통한 동적 감정 분류)

  • Han, Wuri;Lee, Yong-Hwan;Park, Jeho;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.53-57
    • /
    • 2013
  • Human emotions are expressed in various ways. It can be expressed through language, facial expression and gestures. In particular, the facial expression contains many information about human emotion. These vague human emotion appear not in single emotion, but in combination of various emotion. This paper proposes a emotional expression algorithm using Active Appearance Model(AAM) and Fuzz k- Nearest Neighbor which give facial expression in similar with vague human emotion. Applying Mahalanobis distance on the center class, determine inclusion level between center class and each class. Also following inclusion level, appear intensity of emotion. Our emotion recognition system can recognize a complex emotion using Fuzzy k-NN classifier.

Classification of PD Signals Generated in Solid Dielectrics by Neural Networks (모의결함을 갖는 고체절연재에서 발생하는 부분방전 및 패턴분류)

  • Park, S.H.;Lee, K.W.;Park, J.Y.;Kang, S.H.;Lim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1876-1878
    • /
    • 2003
  • The recognition of PD(Partial Discharge) phenomenon is useful for classification of defects. The distribution of stochastic parameters which consisted of those PD pulses data and pulses train can show discriminable characteristics of PD sources. But it is not sufficient to discriminate among to PD sources. In this paper, we suggests that classification method of PD source by NN(Neural Networks) are good tools for differentiate of those. The learning scheme of NN is (Back Propagation learning algorithm(BP).

  • PDF

Estimating the Time to Fix Bugs Using Bug Reports (버그 리포트를 이용한 버그 정정 시간 추정)

  • Kwon, Kimun;Jin, Kwanghue;Lee, Byungjeong
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.755-763
    • /
    • 2015
  • As fixing bugs is a large part of software development and maintenance, estimating the time to fix bugs -bug fixing time- is extremely useful when planning software projects. Therefore, in this study, we propose a way to estimate bug fixing time using bug reports. First, we classify previous bug reports with meta fields by applying a k-NN method. Next, we compute the similarity of the new bug and previous bugs by using data from bug reports. Finally, we estimate how long it will take to fix the new bug using the time it took to repair similar bugs. In this study, we perform experiments with open source software. The results of these experiments show that our approach effectively estimates the bug fixing time.

Study on the Development of Diagnosis Algorithm for Induction Motor Using Current and Magnetic Flux Sensors (전류 및 자속센서를 이용한 유도전동기 예방진단 알고리즘 개발에 관한 연구)

  • Han, Sang-Bo
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1157-1165
    • /
    • 2019
  • This paper discussed the results of the development and application of the machine learning algorithm to the induction motor for the preventive diagnostic system using current and magnetic flux signals. The optimal 29 features were extracted for identifying faulted types of induction motor. In particular, any load rate was derived using the tendency of the difference value from the center of the 7th harmonic frequency to the sideband of the current signal, and the corresponding classification accuracy showed about 84.6% by the KPCA feature reduction technique and the k-NN determination algorithm.

Feature Selecting Algorithm Development Based on Physiological Signals for Negative Emotion Recognition (부정감성 인식을 위한 생체신호 기반의 특징 선택 알고리즘 개발)

  • Lee, JeeEun;Yoo, Sun K.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3925-3932
    • /
    • 2013
  • Emotion is closely related to the life of human, so has effect on many parts such as concentration, learning ability, etc. and makes to have different behavior patterns. The purpose of this paper is to extract important features based on physiological signals to recognize negative emotion. In this paper, after acquisition of electrocardiography(ECG), electroencephalography(EEG), skin temperature(SKT) and galvanic skin response(GSR) measurements based on physiological signals, we designed an accurate and fast algorithm using combination of linear discriminant analysis(LDA) and genetic algorithm(GA), then we selected important features. As a result, the accuracy of the algorithm is up to 96.4% and selected features are Mean, root mean square successive difference(RMSSD), NN intervals differing more than 50ms(NN50) of heart rate variability(HRV), ${\sigma}$ and ${\alpha}$ frequency power of EEG from frontal region, ${\alpha}$, ${\beta}$, and ${\gamma}$ frequency power of EEG from central region, and mean and standard deviation of SKT. Therefore, the features play an important role to recognize negative emotion.

An Incremental Multi Partition Averaging Algorithm Based on Memory Based Reasoning (메모리 기반 추론 기법에 기반한 점진적 다분할평균 알고리즘)

  • Yih, Hyeong-Il
    • Journal of IKEEE
    • /
    • v.12 no.1
    • /
    • pp.65-74
    • /
    • 2008
  • One of the popular methods used for pattern classification is the MBR (Memory-Based Reasoning) algorithm. Since it simply computes distances between a test pattern and training patterns or hyperplanes stored in memory, and then assigns the class of the nearest training pattern, it is notorious for memory usage and can't learn additional information from new data. In order to overcome this problem, we propose an incremental learning algorithm (iMPA). iMPA divides the entire pattern space into fixed number partitions, and generates representatives from each partition. Also, due to the fact that it can not learn additional information from new data, we present iMPA which can learn additional information from new data and not require access to the original data, used to train. Proposed methods have been successfully shown to exhibit comparable performance to k-NN with a lot less number of patterns and better result than EACH system which implements the NGE theory using benchmark data sets from UCI Machine Learning Repository.

  • PDF

Early Multiple Fault Identification of Low-Speed Rolling Element Bearings (저속 구름 베어링의 다중 결함 조기 검출)

  • Kang, Hyunjun;Jeong, In-Kyu;Kang, Myeongsu;Kim, Jong-Myon
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.749-752
    • /
    • 2014
  • 본 논문에서는 저속으로 동작하는 구름 베어링의 다중 결함 조기 검출을 위해 결함 특징 추출, 효과적인 특징 선택, 선택된 특징을 이용한 결함 분류의 세 단계로 구성된 결함 진단 기법을 제안한다. 1단계에서 이산 웨이블릿 변환을 이용하여 미세성분으로부터 통계적 결함 특징을 추출하고, DET(distance evaluation technique)를 이용하여 추출한 결함 특징 가운데 베어링 다중 결함 검출에 효과적인 특징을 선택한다. 마지막으로 선택된 특징을 k-NN(k-Nearest Neighbors) 분류기 입력으로 사용함으로써 결함을 진단한다. 본 논문에서는 제안한 결함 진단 기법의 성능을 분류 정확도 측면에서 평가한 결과 95.14%의 높은 분류 정확도를 보였다.

A Study on The Improvement of Emotion Recognition by Gender Discrimination (성별 구분을 통한 음성 감성인식 성능 향상에 대한 연구)

  • Cho, Youn-Ho;Park, Kyu-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.107-114
    • /
    • 2008
  • In this paper, we constructed a speech emotion recognition system that classifies four emotions - neutral, happy, sad, and anger from speech based on male/female gender discrimination. At first, the proposed system distinguish between male and female from a queried speech, then the system performance can be improved by using separate optimized feature vectors for each gender for the emotion classification. As a emotion feature vector, this paper adopts ZCPA(Zero Crossings with Peak Amplitudes) which is well known for its noise-robustic characteristic from the speech recognition area and the features are optimized using SFS method. For a pattern classification of emotion, k-NN and SVM classifiers are compared experimentally. From the computer simulation results, the proposed system was proven to be highly efficient for speech emotion classification about 85.3% regarding four emotion states. This might promise the use the proposed system in various applications such as call-center, humanoid robots, ubiquitous, and etc.

Classification of Degradation Process with XLPE Cable Specimen (XLPE 전력용 케이블 시편의 열화에 따른 분류)

  • Park, Sung-Hee;Park, Jae-Yeol;Kang, Seong-Hwa;Lim, Kee-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.195-197
    • /
    • 2003
  • In this paper, Neural Networks is studied for estimation of XLPE cable specimen according to degradation. And these data making use of a computer-aided discharge analyser, a combination of statistical and discharge parameter was calculated to discrimination processing stage of degradation. NN has not bad recognition rate result of discrimination for degradation stage because discharge characteristics are very similar to between degradation stage. So, there is some improvement for applied NN.

  • PDF

Enhancement of Classification Accuracy and Environmental Information Extraction Ability for KOMPSAT-1 EOC using Image Fusion (영상합성을 통한 KOMPSAT-1 EOC의 분류정확도 및 환경정보 추출능력 향상)

  • Ha, Sung Ryong;Park, Dae Hee;Park, Sang Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.16-24
    • /
    • 2002
  • Classification of the land cover characteristics is a major application of remote sensing. The goal of this study is to propose an optimal classification process for electro-optical camera(EOC) of Korea Multi-Purpose Satellite(KOMPSAT). The study was carried out on Landsat TM, high spectral resolution image and KOMPSAT EOC, high spatial resolution image of Miho river basin, Korea. The study was conducted in two stages: one was image fusion of TM and EOC to gain high spectral and spatial resolution image, the other was land cover classification on fused image. Four fusion techniques were applied and compared for its topographic interpretation such as IHS, HPF, CN and wavelet transform. The fused images were classified by radial basis function neural network(RBF-NN) and artificial neural network(ANN) classification model. The proposed RBF-NN was validated for the study area and the optimal model structure and parameter were respectively identified for different input band combinations. The results of the study propose an optimal classification process of KOMPSAT EOC to improve the thematic mapping and extraction of environmental information.

  • PDF