• 제목/요약/키워드: k-ω Turbulence Model

검색결과 37건 처리시간 0.023초

2-방정식 및 레이놀즈 응력 모형을 이용한 초음속 난류 기저유동의 수치적 계산 (Computation of supersonic turbulent base flow using two-equation and Reynolds stress models)

  • 김민환;박승오
    • 한국전산유체공학회지
    • /
    • 제2권2호
    • /
    • pp.9-17
    • /
    • 1997
  • The performance of several turbulence models in computing an axisymmetric supersonic base flow is investigated. A compressible Navier-Stokes code, which incorporates k-ε, k-ω model and Reynolds stress closure with three kinds of pressure-strain correlation model, has been developed using implicit LU-SGS algorithm with second-order upwind TVD scheme. Numerical computations have been carried out for Herrin and Dutton's base flow. It is observed that the two-equation models give large backward axial velocity approaching to the base and somewhat larger variation of base pressure distribution than the Reynolds stress model. It is also found that the Reynolds stress model with third order pressure-strain model in the anisotropy tensor predicts most accurate mean flow field.

  • PDF

오목한 반구면의 Jet Impingement/Effusion Hole 주변 유동 특성에 대한 실험과 시뮬레이션의 비교 (Comparison of Experimental and Simulation Results for Flow Characteristics around Jet Impingement/Effusion Hole in Concave Hemispherical Surface)

  • 윤성지;서희림;염은섭
    • 한국가시화정보학회지
    • /
    • 제20권2호
    • /
    • pp.28-37
    • /
    • 2022
  • Flow characteristics of jet impingement over concave hemispherical surface with effusion cooling holes is relatively more complex than that of a flat surface, so the experimental validation for computational fluid dynamics (CFD) results is important. In this study, experimental results were compared with simulation results obtained by assuming different turbulence models. The vortex was observed in the region between the central jets where the recirculation structure appeared. The different patterns of vorticity distributions were observed for each turbulence models due to different interaction of the injected jet flow. Among them, the transition k-kl-ω model predicted similarly not only the jet potential core region with higher velocity, but also the recirculation region between the central jets. From the validation, it may be helpful to accurately predict heat and mass transfer in jet impingement/effusion hole system.

난류 흐름의 RANS 수치모의를 위한 벽함수 성능 평가 (An evaluation of wall functions for RANS computation of turbulent flows)

  • 유동근;백중철
    • 한국수자원학회논문집
    • /
    • 제53권1호
    • /
    • pp.1-13
    • /
    • 2020
  • 높은 레이놀즈수를 갖는 공학적인 흐름을 예측하는 가장 일반적인 방법은 여전히 벽함수를 이용하는 난류모형에 근거한 RANS 수치모의이다. 최근 벽근처의 점성영역 관계식과 벽에서 떨어진 대수영역 관계식을 혼합하여 개발된 일반화된 벽함수들은 두 영역사이의 난류량과 유속이 부드럽게 천이하도록 한다. 이 연구는 난류운동에너지(TKE), 에너지 소산율, 비소산율, 와점성에 대해서 적용 가능한 벽함수들을 조합하여 일련을 수치 모의를 수행하여 널리 이용되고 있는 난류모형들의 성능과 수렴 특성을 분석하였다. 이 연구 결과는 RNG k-𝜖 모형의 경우 첫번째 계산격자가 완충층에 놓이게 될 때는 반복 계산시 작은 허용오차를 이용하여 주의 깊게 적용을 하여야 안정된 해를 구할 수 있음을 보여준다. 표준 k-𝜖과 RNG k-𝜖 모형은 TKE와 와점성에 대해서 적용 가능한 벽함수들 중 어느 것을 선택하여 적용하더라도 수치모의 결과가 민감하게 반응하지 않는 것으로 나타났다. 한편, k-ω SST 모형의 경우 TKE에 대해서는 kL-벽함수 그리고 와점성에 대해서는 nutUB-벽함수를 이용하여야 정확하고 안정된 경계 조건 설정을 보장할 수 있다. 레이놀즈수 155,000조건에서 적용한 후방계산흐름 수치모의 결과 격자 해상도에 상관없이 약 13% 정도 재부착 거리를 과소평가하는 모형을 제외하고 나머지 적용한 난류모형들 모두 적절히 세밀한 해상도의 격자에서 양호하게 재부착거리를 잘 예측하는 것으로 나타났다.

Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-ω model

  • Yang, Yi;Xie, Zhuangning;Gu, Ming
    • Wind and Structures
    • /
    • 제24권5호
    • /
    • pp.465-480
    • /
    • 2017
  • Modelling an equilibrium atmospheric boundary layer (ABL) in computational wind engineering (CWE) and relevant areas requires the boundary conditions, the turbulence model and associated constants to be consistent with each other. Among them, the inflow boundary conditions play an important role and determine whether the equations of the turbulence model are satisfied in the whole domain. In this paper, the idea of modeling an equilibrium ABL through specifying proper inflow boundary conditions is extended to the SST $k-{\omega}$ model, which is regarded as a better RANS model for simulating the blunt body flow than the standard $k-{\varepsilon}$ model. Two new sets of inflow boundary conditions corresponding to different descriptions of the inflow velocity profiles, the logarithmic law and the power law respectively, are then theoretically proposed and numerically verified. A method of determining the undetermined constants and a set of parameter system are then given, which are suitable for the standard wind terrains defined in the wind load code. Finally, the full inflow boundary condition equations considering the scale effect are presented for the purpose of general use.

냉장고 팬 모듈의 물빠짐 구멍 주변 유동 특성 검증 (Flow characteristics validation around drain hole of fan module in refrigerator)

  • 판진싱;이수환;서희림;김동우;염은섭
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.102-108
    • /
    • 2022
  • In the fan module of the intercooling refrigerator, a drain hole structure was designed for stable drainage of defrost water. However, the airflow passing through the drain hole can disturb flow features around the evaporator. Since this backflow leads to an increase in flow loss, the accurate experimental and numerical analyses are important to understand the flow characteristics around the fan module. Considering the complex geometry around the fan module, three different turbulence models (Standard k-ε model, SST k-ω model, Reynolds stress model) were used in computational fluid dynamics (CFD) analysis. According to the quantitative and qualitative comparison results, the Standard k-ε model was most suitable for the research object. High-accuracy results well match with the experiment result and overcome the limitation of the experiment setup. The method used in this study can be applied to a similar research object with an orifice outflow driven by a rotating blade.

원형 노즐의 직경 변화 및 표면으로 부터의 거리변화에 따른 오목한 표면에 충돌하는 제트의 온도장 측정 및 CFD해석 (Temperature field measurement and CFD analysis of a jet impinging on a concave surface depending on changes in nozzle to surface distance and the diameter of a circular nozzle)

  • 조영민;임유진;염은섭
    • 한국가시화정보학회지
    • /
    • 제21권2호
    • /
    • pp.55-62
    • /
    • 2023
  • The characteristic of jet impinging on the concave surface were analyzed through thermographic phosphor thermometry (TPT) and numerical investigation. Under a jet Reynolds number of 6600, nozzle diameters and nozzle-to-surface distances (H/d) were changed 5mm and 10mm and H/d=2 and 5. The RNG k-ε turbulence model can accurately predict the distribution of Nusselt number, compared to other models (SST k-ω, realizable k-ε). Heat transfer characteristics varied with the nozzle diameter and H/d, with a secondary peak noted at H/d =2, due to vortex-induced flow detachment and reattachment. An increase in nozzle diameter enhanced jet momentum, turbulence strength, and heat transfer.

Analyses of International Standard Problem ISP-47 TOSQAN experiment with containmentFOAM

  • Myeong-Seon Chae;Stephan Kelm;Domenico Paladino
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.611-623
    • /
    • 2024
  • The ISP-47 TOSQAN experiment was analyzed with containmentFOAM which is an open-source CFD code based on OpenFOAM. The containment phenomena taking place during the experiment are gas mixing, stratification and wall condensation in a mixture composed of steam and non-condensable gas. The k-ω SST turbulence model was adopted with buoyancy turbulence models. The wall condensation model used is based on the diffusion layer approach. We have simulated the full TOSQAN experiment which had a duration 20000 s. Sensitivity studies were conducted for the buoyancy turbulence models with SGDH and GGDH and there were not significant differences. All the main features of the experiments namely pressure history, temperature, velocity and gas species evolution were well predicted by containemntFOAM. The simulation results confirmed the formation of two large flow stream circulations and a mixing zone resulting by the combined effects of the condensation flow and natural convection flow. It was found that the natural convection in lower region of the vessel devotes to maintain two large circulations and to be varied the height of the mixing zone as result of sensitivity analysis of non-condensing wall temperature. The computational results obtained with the 2D mesh grid approach were comparable to the experimental results.

높은 레이놀즈수를 가진 난류 진동 경계층에서의 k-ε과 k-ω 난류모형의 비교 (Comparative Study on k-ε and k-ω Closures under the Condition of Turbulent Oscillatory Boundary Layer Flow at High Reynolds Number)

  • 손민우;이관홍;이길성;이두한
    • 한국수자원학회논문집
    • /
    • 제44권3호
    • /
    • pp.189-198
    • /
    • 2011
  • 본 연구는 난류현상의 모형화를 위해 널리 이용되는 k-$\varepsilon$과 k-$\omega$ 난류모형을 비교하는 것이 목적으로, 횡방향 흐름이 무시될 수 있는 U-튜브 모양의 터널형 수로 내 높은 레이놀즈수를 가진 진동 경계층 흐름에 두 난류해석방법을 적용하였다. 난류모형의 적용은 1차원 연직 모형을 통해 이루어지며, 수치 모의 결과, 유속의 분포와 난류운동에너지 (turbulent kinetic energy) 모두에서 두 모형이 매우 유사한 결과를 나타낸다. 이를 통하여, 횡방향 압력경사가 무시될 수 있는 조건에서는 k-$\varepsilon$과 k-$\omega$ 난류모형이 큰 차이를 보이지 않고, 우수한 결과를 나타냄을 알 수 있다. 따라서 직선형 하천 및 하구부, 해안에서의 파랑 흐름 등과 같이 횡방향의 압력경사가 미미한 지역에서의 난류를 수치적으로 해석할 경우, 기존의 풍부한 연구를 통해 매개변수의 검보증이 장기간 이루어진 k-$\varepsilon$ 모형을 이용하는 것이 추천된다.

Analysis of Two Dimensional and Three Dimensional Supersonic Turbulence Flow around Tandem Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Lee Kyung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1256-1265
    • /
    • 2006
  • The supersonic flows around tandem cavities were investigated by two-dimensional and three-dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes (RANS) equation with the k- ω turbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split with van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge- Kutta method. The aspect ratios of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two- dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the first cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.

굽어진 유로 내부의 충격파-경계층 상호작용 수치연구 (Numerical Study of Shock Wave-Boundary Layer Interaction in a Curved Flow Path)

  • 김재은;정승민;최정열;황유준
    • 한국추진공학회지
    • /
    • 제25권6호
    • /
    • pp.36-44
    • /
    • 2021
  • 스크램제트 엔진 비행시험체의 굽어진 중앙동체 내부 유로에서 발생하는 충격파-경계층 상호작용에 대한 수치해석을 수행하였다. 수치해석에는 압축성 Raynolds Averaged Navier Stokes(RANS) 방정식에 난류모델 k-ω SST을 사용하였다. 대표적으로 노즐 윗 벽면의 박리기포, 오목한 충격파와 경계층의 상호작용, 모서리의 충격파-충격파 상호작용이 포착되었다. 해석 결과는 굽어진 내부 유로의 충격파-경계층 상호작용을 가시화하여 이해를 높이고 설계 유의점을 제시하였다.