최근접 이웃(k nearest neighbor) 알고리즘은 새로운 개체의 목표값을 예측하기 위하여 과거의 유사한 데이타를 이용하여 그 값을 예측하는 것이다. 이 방법은 기계학습의 여러 분야에서 그 유용성을 검증받아 널리 사용되고 있다. 이러한 kNN 알고리즘에서 목표값을 예측할 때 각 속성의 가중치를 동일하게 고려하는 것은 좋은 성능을 보장할 수 없으며 따라서 kNN에서 각 속성에 대한 가중치를 적절히 계산하는 것은 kNN 알고리즘의 성능을 결정하는 중요한 요소중의 하나이다. 본 논문에서는 정보이론을 이용하여 kNN 에서의 속성의 가중치를 효과적으로 계산하는 새로운 방법을 제시하고자한다. 제안된 방법은 각 속성이 목표 속성에 제공하는 정보의 양에 따라 가중치를 자동으로 계산하여 kNN 방법의 성능을 향상시킨다. 개발된 알고리즘은 다수의 실험 데이타를 이용하여 그 성능을 비교하였다.
최근접 객체 질의(Nearest Neighbor Query)는 질의가 요청된 지점으로부터 가장 가까운 객체를 찾는 질 의로 위치기반 서비스 분야에서 가장 널리 사용되고 있는 질의의 형태이다. 이를 기반으로 한 지역 최근접 객체 질의 (Range Nearest Neighbor), 연속 최근접 객체 질의(Continuos Nearest Neighbor)등의 확장 된 개념으로 다양한 최근접 객체 질의가 제안되어 왔다. 그러나 지금까지의 최근접 객체 질의를 기반으로 한 연구들은 점으로 표현된 질의를 기준으로 하여 최근접 객체를 찾는 기준점 최근접 객체(Point Nearest Neighbor) 질의를 기반으로 하고 있어, 점으로 표현이 불가능한 1 차원 형태의 질의에 대하여 효과적인 최근접 객체를 검색하는 연구는 연구된 바 없다. 본 논문에서는 한 개 이상의 1 차원 형태의 선분으로 이루어진 질의에 대하여 질의 주변의 객체 중 최근접 객체를 찾는 다중선 최근접 객체 질의 (Polyline Nearest Neighbor)를 정의하고 효과적인 질의 처리 알고리즘을 제안하였다. 제안된 기법의 성능 분석을 위한 실험은 객체와 질의가 다양한 형태로 분포되어 있는 환경아래 진행되었으며, 실험 결과는 기대 값과 근접한 결과 값을 얻었다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제4권3호
/
pp.337-340
/
2004
The clustering problem can be formulated as the problem to find the number of clusters and a partition matrix from a given data set using the iterative or non-iterative algorithms. The author proposes a nearest neighbor and validity-based clustering algorithm where each data point in the data set is linked with the nearest neighbor data point to form initial clusters and then a cluster in the initial clusters is linked with the nearest neighbor cluster to form a new cluster. The linking between clusters is continued until no more linking is possible. An optimal set of clusters is identified by using the conventional cluster validity index. Experimental results on well-known data sets are provided to show the effectiveness of the proposed clustering algorithm.
공간 데이터베이스 시스템에서는 주어진 위치에서 가장 근접한 k개의 객체를 찾는 근사 k-최대 근접질의가 자주 발생한다. 근사 k-최대 근접 질의의 성능을 높이기 위해서는 색인에서 검색되는 노드의 수를 최소화할 수 있어야 한다. 본 논문에서는 기존의 알고리즘을 확장하여 동적인 공간 데이터베이스 환경에서 R-트리 유형의 색인 구조를 이용한 근사 k-최대 근접 질의 처리방법을 제안하고 그 성능을 평가 한다. 실험결과에 의하면, 제안된 방법은 객체의 분포 형태, 질의 크기 그리고 근사율에 관계없이 항상 낮은 디스크 접근 횟수를 보였다.
판별분류분석에서 널리 이용되는 k-최근접 이웃 분류 방법은 고정된 이웃의 수만을 고려하여 자료의 국소적 특징을 반영하지 못하는 한계가 있다. 이에 자료의 국소적 구조를 고려하여 이웃의 개수를 선택하는 적응 최근접이웃방법이 개발된 바 있다. 고차원 자료의 분석에 있어서는 k-최근접 이웃 분류를 사용하기 전에 랜덤 투영 기법 등을 활용하여 차원 축소를 수행하는 것이 일반적이다. 이렇게 랜덤 투영시킨 다수의 분류 결과들을 면밀히 조합하여 투표를 통해 최종 할당을 하는 기법이 최근 개발된 바 있다. 본 연구에서는 고차원 자료에서의 분석을 위해 적응 최근접이웃방법과 랜덤 투영 앙상블 기법을 조합한 새로운 판별분류 기법을 제안하였다. 제안된 방법은 기존에 개발된 방법에 비해 분류 정확성 측면에서 더 뛰어남을 모의실험 및 실제 사례 분석을 통해 확인하였다.
최근접 질의 (NN: Nearest Neighbor Query)는 질의요청자와 가상 가까운 곳에 위치한 대상 객체를 검색하기 위한 질의로서, 모바일 환경에서 빈번하게 사용되는 질의 유형이다. 이 논문에서는 모바일 환경에서 방향 성분을 가지며 연속적으로 이동하는 질의 요청자가 요구하는 최근접 대상 객체를 검색하기 위한 질의 처리 방법을 제안한다. 제안된 방법은 모바일 환경에서 특정 방향 성분을 갖고 위치를 이동하는 질의요청자의 방향 속성을 반영하여 최근접 객체를 검색할 수 있도록 유클리디안 거리 정보뿐만 아니라 사용자의 진행 방향을 고려하여 최근섭 대상 객체를 검색한다. 제안된 방법은 모바일 환경에서 최근섭 객체의 검색 기능을 요구하는 교통 정보 시스템, 관광정보 시스템, 위치 기반 추천 시스템과 같은 응용 분야에 적용할 수 있다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권11호
/
pp.3896-3915
/
2014
The Reverse k Nearest Neighbor (RkNN) query is valuable for finding objects influenced by a specific object and is widely used in both scientific and commercial systems. However, the influence level of each object is unknown, information that is critical for some applications (e.g. target marketing). In this paper, we propose a new query type, Ordered Reverse k Nearest Neighbor (ORkNN), and make efforts to adapt it in an on-demand scenario. An Order-k Voronoi diagram based approach is used to answer ORkNN queries. In particular, for different values of k, we pre-construct only one Voronoi diagram. Algorithms on both the server and the clients are presented. We also present experimental results that suggest our proposed algorithms may have practical applications.
문서 범주화에서 문서의 내용에 따라 적합한 범주의 종류와 수를 찾는 문제를 해결하기 위해서는 문서 당 하나의 범주를 할당할 경우에 가장 좋은 성능을 보이는 모델이 효과적일 것이다. 그러므로, 본 논문에서는 문서 당 하나의 범주를 할당할 경우에 좋은 결과를 보이는 k-nearest neighbor 방법을 이용한다. 그리고 k-nearest neighbor 방법을 이용한 문서 범주화의 성능을 향상시키기 위해서, 문서 표현에 사용하는 단어들을 범주 자질의 성격을 갖는 단어들로 제한하는 방법을 제안한다. 제안한 방법은 Router 신문 일년치로 구성된 Router-21578 테스트 집합에서 breakeven point 82%라는 좋은 결과를 보였다.
통계적 분석을 할 때 결측치가 발생하는 것은 매우 통상적이다. 이러한 결측치를 대치하는 방법은 여러가지가 있으며, 기존에 사용되는 단일대치법으로 k-nearest neighbor(KNN) 방법이 있다. 하지만 KNN 방법은 k개의 최근접 이웃들 중 극단치나 이상치가 있을 때 편의를 일으킬 수 있다. 본 논문에서는 KNN 방법의 단점을 보완하여 가중 k-최근접이웃(Weighted k-Nearest Neighbors; WKNN) 대치법을 제안하였다. 또한 모의실험을 통해서 기존의 방법과 비교하였다.
우리는 그룹핑 k-최근접 (Grouping k Nearest Neighbor; GkNN)질의를 지원하기 위하여 유연한 최근접객체(Flexible Nearest Neighbor; FNN)검색 방법을 제안한다. GkNN이란 기존에 제안된 kNN과 다르게 질의자가 요청한 k개의 객체를 모두 확인한 후에 이동 경로의 총합이 가장 작은 k개의 객체를 검색하는 방법이다. 기존 연구에서 제안된 최근접 객체들 (Nearest Neighborhood; NNH) 또한 이 문제를 해결하기 위하여 제안되었다. 그러나 NNH의 문제점은 객체 k와 p가 고정되어 있기 때문에 이동 환경에서 q에서 C까지의 거리가 증가하는 것이다. FNN의 환경은 NNH의 환경과 유사하다. 우리는 NNH의 q에서 집합 C 중 거리 중 가장 짧은 $c_i$ 선택한 후 q에서 $c_i$에 포함된 객체들 모두 검색하는 이동 경로의 총합과 FNN의 이동경로의 총 합을 비교하여 NNH의 문제점을 해결하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.