• Title/Summary/Keyword: junction array

Search Result 94, Processing Time 0.033 seconds

Depth-dependent EBIC microscopy of radial-junction Si micropillar arrays

  • Kaden M. Powell;Heayoung P. Yoon
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.17.1-17.9
    • /
    • 2020
  • Recent advances in fabrication have enabled radial-junction architectures for cost-effective and high-performance optoelectronic devices. Unlike a planar PN junction, a radial-junction geometry maximizes the optical interaction in the three-dimensional (3D) structures, while effectively extracting the generated carriers via the conformal PN junction. In this paper, we report characterizations of radial PN junctions that consist of p-type Si micropillars created by deep reactive-ion etching (DRIE) and an n-type layer formed by phosphorus gas diffusion. We use electron-beam induced current (EBIC) microscopy to access the 3D junction profile from the sidewall of the pillars. Our EBIC images reveal uniform PN junctions conformally constructed on the 3D pillar array. Based on Monte-Carlo simulations and EBIC modeling, we estimate local carrier separation/collection efficiency that reflects the quality of the PN junction. We find the EBIC efficiency of the pillar array increases with the incident electron beam energy, consistent with the EBIC behaviors observed in a high-quality planar PN junction. The magnitude of the EBIC efficiency of our pillar array is about 70% at 10 kV, slightly lower than that of the planar device (≈ 81%). We suggest that this reduction could be attributed to the unpassivated pillar surface and the unintended recombination centers in the pillar cores introduced during the DRIE processes. Our results support that the depth-dependent EBIC approach is ideally suitable for evaluating PN junctions formed on micro/nanostructured semiconductors with various geometry.

Current Limitation Characteristics of Josephson Junction Array (조셉슨 접합 어레이의 전류 차단특성)

  • Kang, C.S.;Kim, K.;Yu, K.K.;Lee, S.J.;Kwon, H.;Hwang, S.M.;Lee, Y.H.;Kim, J.M.;Lee, S.K.
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.144-148
    • /
    • 2009
  • A current limiter was manufactured using a Josephson junction array to cut off an excessive current flowing into the SQUID sensor. The Fabricateed Josephson junction array was connected in series with a flux transformer that consists of a pick-up coil and an input coil, and the flux transformer was inductively coupled with a Double Relaxation Oscillation SQUID(DROS). The flux-voltage modulation curve was induced by applying an AC magnetic field whose magnitude was far smaller than that of the DC magnetic field. A change in the flux-voltage modulation curve of the SQUID was observed while the DC magnetic field was increased, to qualitatively examine the current limiting characteristic of the Josephson junction array. As a result, it was found that the SQUID flux-voltage modulation curve disappeared at the critical current of the Josephson junction array, which indicates that the Josephson junction array properly works as a current limiter.

  • PDF

Fabrication and Characteristics of 10-V Josephson Junction Array (10-V 조셉슨접합 어레이의 제작 및 특성)

  • 홍현권;박세일;김규태
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.59-63
    • /
    • 2002
  • 10-V Josephson junction array arranged in 8 parallel stripline paths was fabricated using self-aligning and reactive ion etching techniques. These techniques were introduced in detail with aim of obtaining high-quality junctions. The array has 18,184 Josephson junctions with the area of $12\mu\textrm{m}$$\times$$38\mu\textrm{m}$. The gap voltage and minimum critical current density were about 2.7 ㎷ and /$23 A\textrm{cm}^2$, respectively. And the critical current density and leakage current at 5 volt were about 27 $A/\textrm{cm}^2$ and $5\mu\textrm{A}$, respectively When operated in the frequency range of 76-88 ㎓, the away generated constant voltage steps up to 14-19 V. The step size near 10-V was more than 7 $\mu\textrm{A}$.

  • PDF

Josephson Junction Array for Voltage Metrology: Microwave Enhancement by Coupled Self-Generations in Series Array (전압 측정표준용 조셉슨 접합 어레이: 직렬 어레이에서 상호 결합된 자체발진의 마이크로파 증진)

  • Kim K.-T.;Kim M.-S.;Chong Y.-W.
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 2005
  • Coupling of non-linear oscillators have long been an interesting problem for physicists. The coupling phenomena have been frequently observed in Josephson junction series array, which have been used for Josephson voltage standard. Interestingly pronounced self-generation effect has been found during recent development of Josephson arrays for programmable Josephson voltage standard. But the coupling effect between the self-generations is not fully understood yet. We present harmonically approximated analytical solutions for coupled self-generations in the Josephson arrays, i.e., Superconductor-Insulator-Normal metal-Insulator-Superconductor (SINIS) array, externally shunted Superconductor-Insulator-Supercondctor (es-SIS) array, Superconductor-Normal metal-Superconductor (SNS) array. We find that the coupling between the self-generated Josephson oscillations through microwave transmission line plays critical role in microwave property of the Josephson array.

  • PDF

Design for Triple Band Patch Array Antenna with High Detection Ability

  • Kim, In-Hwan;Min, Kyeong-Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.214-223
    • /
    • 2013
  • This paper proposes a theoretical analysis of hidden device detection and a design of multiband circular polarization patch array antenna for non-linear junction detector system application. A good axial ratio of circular polarization patch antenna is realized by a new approach that employs inclined slots, two rectangular grooves and a truncated ground for the conventional antenna. A good axial ratio of the 1.5 dB lower is measured by having an asymmetric gap distance between the ground planes of the coplanar waveguide feeding structure. The common ground plane of the linear array has an optimum trapezoidal slot array to reduce the mutual coupling without increasing the distance between the radiators. The higher gain of about 1 dBi is realized by using the novel common ground structure. The measured return loss, gain, and axial ratio of the proposed single radiator, as well as the proposed array antennas, showed a good agreement with the simulated results.

A study on design for a feeder waveguide array of the slot array antennas for DBS (DBS용 슬롯 어레이 안테나의 급전도파관 설계에 관한 연구)

  • 민경식;김광욱;김동철;임학규;김상태
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.116-119
    • /
    • 1999
  • This paper presents a feeder waveguide array of slot array antennas for Direct Broadcasting from Satellite(DBS). The feed structure consists of a single waveguide placed on the same layer as radiating waveguide and is characterized by the unit divider, called a $\pi$-Junction. This K-function with an inductive wall splits part of the power into two branch waveguide through one coupling window, and can excite densely arrayed waveguide at equal phase and amplitude. The power dividing characteristics of a cascade of $\pi$ -functions are analyzed by Galerkin's method of moments. From the optimum simulation results based on the feeder waveguide using $\pi$ -Junction at 3.95GHz, we obtained the scattering matrices of the feeder divided power at 11.85CHz.

  • PDF

GaInP/GaAs/Ge Triple Junction Solar Array Power Performance Evaluation on Geostationary Orbit (GaInP/GaAs/Ge 3중 접합 태양전지 배열기의 정지궤도에서 전력 성능 평가)

  • Koo, Ja-Chun;Park, Hee-Sung;Lee, Na-Young;Cheon, Yee-Jin;Cha, Han-Ju;Moon, Gun-Woo;Ra, Sung-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1057-1064
    • /
    • 2014
  • The satellite on geostationary orbit accommodates multiple payloads into a single spacecraft platform and launched in June 26, 2010. The electrical power required to the satellite during sunlight is generated by a solar array wing. The solar cells are the GaInP/GaAs/Ge Triple Junction cells named Gaget2 cells from RWE Space, which were based on a Spectrolab epitaxy. This paper evaluates solar array power performance at end of design life based on the trend analysis results for the flight data on geostationary orbit. The estimated solar array power performance at end of design life compares with the power performance provided by solar array manufacturer. The solar cells show nominal behavior without significant degradation through the trend analysis results.

16-port Feed Waveguide Array for DBS Reception System Mounted on Vehicle (차량 탑재형 DBS 수신 시스템용 16 포트 급전 도파관 어레이)

  • Min, Gyeong-Sik;Kim, Dong-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.2
    • /
    • pp.92-100
    • /
    • 2002
  • The 16-port feed waveguide array with inductive walls analyzed by Galerkin's method of moments are proposed for the DBS reception system mounted on vehicle. First of all, in order to verify the validity of electromagnetic analysis and design for a $\pi$-junction feed waveguide, it is designed and fabricated at DBS band. The measurement results of a $\pi$-junction feed waveguide agree well with the theoretical ones. Based on this design method, an array design for WR-90 standard waveguide is conducted. Since the width of a $\pi$-junction feed WR-90 standard waveguide is larger than a guided wave length in an array design, the difference of amplitude and phase of 8-port array are calculated 2.3 dB and 62 degrees, respectively. The bandwidth with return loss of -20 dB below is about 220 MHz and it doesn't satisfy DBS band. To solve this problem, we propose a novel design that the width of a $\pi$-junction feed waveguide equals to a guided wave length. By the proposed novel design for 8-port feed waveguide array, the difference of amplitude and phase are decreased 1 dB and 13 degrees, respectively. The broad bandwidth of 700 MHz is also realized. The size of 16-port waveguide away compared with WR-90 array is reduced about 10 cm. The measured antenna gain for the fabricated 16-port feed waveguide array is observed 24 dBi above at DBS band.