• Title/Summary/Keyword: jump height

Search Result 121, Processing Time 0.027 seconds

Effect of Joint Kinetics and Coordination on the Within-Individual Differences in Maximum Vertical Jump (관절 역학과 협응이 최대 수직 점프의 개인내 수행차에 미치는 영향)

  • Kim, Yong-Woon;Seo, Jung-Suk;Han, Dong-Wook
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.305-314
    • /
    • 2012
  • The purpose of this study was to investigate the effects of joint kinetics and coordination on within-individual differences in maximum vertical jump. 10 male subjects aged 20 to 30 performed six trials in maximum vertical jump and with based on jump height the good(GP) and bad(BP) performances for each subject were compared on joint kinetics of lower extremity and coordination parameters such as joint reverse and relative phase. The results showed that maximum moment, power, and work done of hip joint and maximum moment of ankle joint in GP were significantly higher than that in the BP but no significant differences for the knee joint. We could observe a significant difference in joint reverse timing between both conditions. And also the relative phase on ankle-knee and ankle-hip in GP were significantly lower than that in the BP, which means that in GP joint movements were more in-phase synchronized mode. In conclusion, mechanical outputs of hip and ankle joints had an effect on within-individual differences in vertical jump and the inter-joint coordination and coordination including sequence and timing of joint motion also might be high influential factors on the performances within individual.

Mobility Improvement of a Jumping Robot using Conical Spring with Variable Length Endtip (가변길이 엔드팁을 갖는 원추형 스프링을 이용한 도약로봇의 이동성 향상)

  • Kim, Ki-Seok;Kim, Byeong-Sang;Song, Jae-Bok;Yim, Chung-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1108-1114
    • /
    • 2009
  • Mobility is one of the most important features for a guard robot since it should be operated in rough places. A wheel-based mobile robot capable of jumping is an appropriate structure for a guard robot because it can easily satisfy the requirements for small guard robots. The jumping robot can reach a higher place more rapidly than other locomotion methods. This research proposes a small robot equipped with the jumping mechanism based on the conical spring with the variable length endtip. The variable length endtip enables the independent control of the jump force and jump angle which are related to the jump height and jump distance, respectively. Various experiments demonstrated that the proposed jumping mechanism can provide the independent control of jump force and jump angle, and improve the mobility of a small robot to overcome an obstacle. Furthermore, a combination of the jumping mechanism and the PSD sensor to measure the distance to the step enable the jumping robot to autonomously climb stairs.

Analysis of Kinematics and Kinetics According to Skill Level and Sex in Double-under Jump Rope Technique

  • Kim, Dae Young;Jang, Kyeong Hui;Lee, Myeoung Gon;Son, Min Ji;Kim, You Kyung;Kim, Jin Hee;Youm, Chang Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.171-179
    • /
    • 2017
  • Objective: The purpose of this study was to perform a kinematic and kinetic analysis of double-under jump rope technique according to skill level and sex. Method: Participants comprised a skilled group of 16 (9 males, 7 females), and an unskilled group of 16 with 6 months or less of experience (9 males, 7 females). Five consecutive double-under successes were regarded as 1 trial, and all participants were asked to complete 3 successful trials. The data for these 3 trials were averaged and analyzed after collecting the stable third jump in each trial. The variables used in the analysis included phase duration, total duration, flight time, vertical toe height, stance width, vertical center of mass displacement, and right lower limb ankle, knee, and hip joint angles in the sagittal plane during all events. Results: The skilled group had a shorter phase and total duration and a shorter flight time than the unskilled group. The vertical center of mass displacement and ankle dorsiflexion angle were significantly smaller in the skilled group. The male group had a shorter phase duration than the female group. The vertical toe height was greater, the stance width was smaller, and the ankle and hip flexion angles were smaller in the male group. Conclusion: Variables that can be used to distinguish between skill levels are phase and total duration, flight time, vertical center of mass displacement, and ankle dorsiflexion angle. Differences between sexes in double-under jump rope technique may be related to lower limb flexion angle control.

Biomechanical Comparison of Good and Bad Performances within Individual in Maximum Vertical Jump (최대 수직 점프시 개인내 우수 수행과 비우수 수행의 역학적 비교)

  • Kim, Yong-Woon;Kim, Yong-Jae
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.489-497
    • /
    • 2009
  • The purpose of this study was to find differences of jumping performances within individual and to identify the influencing factors in these differences. 20 male subjects performed 6 maximal vertical jumps. The best(GP) & worst(BP) performance of each subject based on their jump height were compared in further analysis. There was a significant difference of approx. 10% in the jump height between GP and BP, which resulted from height of COM and vertical velocity at the instant of take-off. We could observe a significantly higher ankle moment in the GB more than the BP but no significant differences for the knee and hip joint. Also the maximum power of ankle joints in the GP were significantly higher than that in the BP. According to the results, the mechanical output of knee and hip joint are not as influential as that of ankle joint for difference of performance within individual. In conclusion, the results showed that mechanical output of the ankle joint could be more influential factors on the performances within individual although the knee and hip joint play an important role in the vertical jump. We therefore propose that more emphasis should be placed on the potentiation of the ankle joint for the training of the maximum vertical jump.

An Experimental Study for the Hydraulic Characteristics of Vertical lift Gates with Sediment Transport (퇴적토 배출을 수반한 연직수문의 수리특성에 관한 실험적 연구)

  • Choi, Seung Jea;Lee, Ji Haeng;Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.4
    • /
    • pp.246-256
    • /
    • 2018
  • In order to analyze hydraulic characteristics of discharge coefficient, hydraulic jump height, and hydraulic jump length, accompanied sediment transport, in the under-flow type vertical lift gate, the hydraulic model experiment and dimensional analysis were performed. The correlations between Froude number and hydraulic characteristics were schematized according to the presence and absence of sediment transport; the correlation of hydraulic characteristics and non-dimensional parameters was analyzed and multiple regression formulae were developed. In the hydraulic characteristics accompanied the sediment transport, by identifying the aspect different from the case that the sediment transport is absent, we verified that it is necessary to introduce variables that can express the characteristics of sediment transport. The multiple regression equations were suggested and each determination coefficient appeared high as 0.749 for discharge coefficient, 0.896 for hydraulic jump height, and 0.955 for hydraulic jump length. In order to evaluate the applicability of the developed hydraulic characteristic equations, 95% prediction interval analysis was conducted on the measured and the calculated by regression equations, and it was determined that NSE (Nash-Sutcliffe Efficiency), RMSE (root mean square), and MAPE (mean absolute percentage error) are appropriate, for the accuracy analysis related to the prediction on hydraulic characteristics of discharge coefficient, hydraulic jump height and length.

The Effect of an 8-week Velocity-based Training on Mechanical Power of Elite Sprinters (8주간 속도 기반 트레이닝이 단거리 육상선수의 순발력에 미치는 영향)

  • Jae Ho Kim;Sukhoon Yoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.1
    • /
    • pp.18-24
    • /
    • 2024
  • Objective: The purpose of this study was to evaluate the effects of an 8-week velocity-based training on the maximum vertical jump in elite sprinters. Method: Ten elite sprinters were participated in this study (age: 21 ± 0.97 yrs., height: 179 ± 3.54 cm, body mass: 72 ± 2.98 kg). An 8-week velocity-based power training was provided to all subjects for twice per week. Their maximum vertical jumps were measured before and after velocity-based training. A 3-dimensional motion analysis with 8 infrared cameras and 4 channels of EMG was performed in this study. A paired t-test was used for statistical verification. The significant level was set at α=.05. Results: There were no statistically significant differences were found between pre and post the training (p>.05). However, most variables included jump record, knee joint ROM, and muscle activation of rectus femoris showed increased pattern after the training. Conclusion: In this study, an 8-week velocity-based training did not showed the significant training effects. However, knee joint movement which is the key role of the vertical jump revealed positive kinematic and kinetic pattern after the training. From this founding, it is believed that velocity-based training seems positively affect the vertical jump which is the clear measurement of mechanical power of sprinter. In addition, to get more clear evidence of the training more training period would be needed.

Effects of plyometric exercise and weight training on athletic performances (플라이오메트릭과 웨이트 트레이닝이 운동 수행 능력에 미치는 영향)

  • Ahn, In-Tae;Choi, Bo-ram
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.1
    • /
    • pp.47-54
    • /
    • 2022
  • Background: Plyometric exercise is an exercise exerting forceful power in a brief period using isotonic activation. It is effective to improve reaction of muscle, agility, endurance and athletics performance. Weight training is an exericse improving muscular strength, endurance and respirating ability applying diversely in frequency and load of exercise Plyometric exercise and Weight training is to facilitate the athletics performance though improving the function of lower limb muscle, there is a difference that Plyometic jump squats is the way to improve agility and Weight training is the way to improve muscular strength. Therefore, it is necessary to know how this difference effects on athletics performance as measuring ankle, ROM, and jumping ability. Design: Randomized controlled trial. Method: This study was conducted with the voluntary participation of 40 university students, who were randomly assigned to jump squat and calf raise groups (n=20 per group). For each subject, we measured the range of motion of the ankle joint before and after exercise, as well as a standing broad jump and vertical jump test performance. We compared the performance indices before and after exercises using paired t-tests, and between groups using independent-samples t-tests. Conclusions: Both jump squat and calf raise exercises improved ankle joint dorsiflexion and plantar flexion, as well as standing broad jump and vertical jump height performance. However, there were no significant differences before versus after exercise, or between exercise types. Although jump squats and calf raises have different purposes, it is thought that, in combination, these exercises improve performance more effectively than either alone, and that such a combined exercise program improves the quality of training in both the general public and athletes in various sports.

AIR ENTRAINMENT AND ENERGY DISSIPATION AT STEPPED DROP STRUCTURE

  • Kim Jin Hong
    • Water Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.195-206
    • /
    • 2004
  • This paper deals with oxygen transfer by air entrainment and energy dissipations by flow characteristics at the stepped drop structure. Nappe flow occurred at low flow rates and for relatively large step height. Dominant flow features included an air pocket, a free-falling nappe impact and a subsequent hydraulic jump on the downstream step. Most energy was dissipated by nappe impact and in the downstream hydraulic jump. Skimming flow occurred at larger flow rates with formation of recirculating vortices between the main flow and the step comers. Oxygen transfer was found to be proportional to the flow velocity, the flow discharge, and the Froude number. It was more related to the flow discharge than to the Froude number. Energy dissipations in both cases of nappe flow and skimming flow were proportional to the step height and were inversely proportional to the overflow depth, and were not proportional to the step slope. The stepped drop structure was found to be efficient for water treatment associated with substantial air entrainment and for energy dissipation.

  • PDF

A Study on the Air Pollution Potential in the Central Part of Korea (中部地方 各地의 大氣汚染潛在力에 관한 硏究)

  • 李鍾範
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.41-47
    • /
    • 1991
  • Air pollution potentials of the 7 cities in the central part of Korea were obtained with the mean wind speed within the mixed layer and the mixed layer height calculated by the Jump Model. Seasonal variation of the afternoon mixed layer height in Seoul area shows that low in winter and high in summer. Annual mean of the morning air pollution potential was lowest in Incheon and highest in Wonju. On the other hand annual mean of the afternoon air pollution potential was lowest in Incheon and highest in Chuncheon. Relatively low air pollution potential in Incheon can be explained as high mixed layer height and the effect of sea breeze.

  • PDF

Analysis of Kinematic Factors between Success and Failure of Free Aerial Cartwheel on the Balance Beam (평균대 한발 몸 펴 옆 공중돌기의 성패에 따른 운동학적 요인 분석)

  • Jung, Choong Min;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.1
    • /
    • pp.24-30
    • /
    • 2022
  • Objective: The purpose of this study was to determine the factors of successful and unsuccessful movements through the analysis of kinematics and muscle activity of the Free Aerial Cartwheel on the balance beam. Method: Subjects (Age: 22.8 ± 2.4 yrs., Height: 158.7 ± 5.0 cm, Body mass: 54.1 ± 6.4 kg, Career: 13 ± 2.4 yrs.) who were currently active as female gymnasts participated in the study. They had no history of surgical treatment within 3 months. Subject criteria included more than 10 years of professional experience in college and professional level of gymnastics and the ability to conduct the Free Aerial Cartwheel on the Balance Beam. Each subject performed 10 times of Free Aerial Cartwheel on the balance beam. One successful trial and one unsuccessful trial (failure) among 10 trials were selected for the comparison. Results: It was found that longer time required in case of unsuccessful trial when performing the Free Aerial Cartwheel on the balance beam compared with successful trial. It is expected to be the result of movement in the last landing section (i.e. phase 5). In addition, it was found that the center of gravity of the body descends at a high speed to perform the jump (i.e. phase 2) in order to obtain a sufficient jumping height when the movement is successful while the knee joint is rapidly extended to perform a jump when movement fails. In the single landing section after the jump (i.e. phase 4), if the ankle joint rapidly dorsiflexed after take-off and the hip joint rapidly flexed, so landing was not successful. Conversely, in a successful landing movement, muscle activity of the biceps femoris was greatly activated resulting no shaking in the last landing section (i.e. phase 5). Conclusion: In order to succeed in this movement, it is necessary to perform a strong jump after rapidly descending the center of gravity of the body using the force of the biceps femoris muscle. Further improvement of the skills on the balance beam requires the analysis of the game-like situation with continuous research on kinematic and kinematic analysis of various techniques, jumps, turns, etc.