• 제목/요약/키워드: journal value

검색결과 73,169건 처리시간 0.1초

Structure of Export Competition between Asian NIEs and Japan in the U.S. Import Market and Exchange Rate Effects (한국(韓國)의 아시아신흥공업국(新興工業國) 및 일본(日本)과의 대미수출경쟁(對美輸出競爭) : 환율효과(換率效果)를 중심(中心)으로)

  • Jwa, Sung-hee
    • KDI Journal of Economic Policy
    • /
    • 제12권2호
    • /
    • pp.3-49
    • /
    • 1990
  • This paper analyzes U.S. demand for imports from Asian NIEs and Japan, utilizing the Almost Ideal Demand System (AIDS) developed by Deaton and Muellbauer, with an emphasis on the effect of changes in the exchange rate. The empirical model assumes a two-stage budgeting process in which the first stage represents the allocation of total U.S. demand among three groups: the Asian NIEs and Japan, six Western developed countries, and the U.S. domestic non-tradables and import competing sector. The second stage represents the allocation of total U.S. imports from the Asian NIEs and Japan among them, by country. According to the AIDS model, the share equation for the Asia NIEs and Japan in U.S. nominal GNP is estimated as a single equation for the first stage. The share equations for those five countries in total U.S. imports are estimated as a system with the general demand restrictions of homogeneity, symmetry and adding-up, together with polynomially distributed lag restrictions. The negativity condition is also satisfied for all cases. The overall results of these complicated estimations, using quarterly data from the first quarter of 1972 to the fourth quarter of 1989, are quite promising in terms of the significance of individual estimators and other statistics. The conclusions drawn from the estimation results and the derived demand elasticities can be summarized as follows: First, the exports of each Asian NIE to the U.S. are competitive with (substitutes for) Japan's exports, while complementary to the exports of fellow NIEs, with the exception of the competitive relation between Hong Kong and Singapore. Second, the exports of each Asian NIE and of Japan to the U.S. are competitive with those of Western developed countries' to the U.S, while they are complementary to the U.S.' non-tradables and import-competing sector. Third, as far as both the first and second stages of budgeting are coneidered, the imports from each Asian NIE and Japan are luxuries in total U.S. consumption. However, when only the second budgeting stage is considered, the imports from Japan and Singapore are luxuries in U.S. imports from the NIEs and Japan, while those of Korea, Taiwan and Hong Kong are necessities. Fourth, the above results may be evidenced more concretely in their implied exchange rate effects. It appears that, in general, a change in the yen-dollar exchange rate will have at least as great an impact, on an NIE's share and volume of exports to the U.S. though in the opposite direction, as a change in the exchange rate of the NIE's own currency $vis-{\grave{a}}-vis$ the dollar. Asian NIEs, therefore, should counteract yen-dollar movements in order to stabilize their exports to the U.S.. More specifically, Korea should depreciate the value of the won relative to the dollar by approximately the same proportion as the depreciation rate of the yen $vis-{\grave{a}}-vis$ the dollar, in order to maintain the volume of Korean exports to the U.S.. In the worst case scenario, Korea should devalue the won by three times the maguitude of the yen's depreciation rate, in order to keep market share in the aforementioned five countries' total exports to the U.S.. Finally, this study provides additional information which may support empirical findings on the competitive relations among the Asian NIEs and Japan. The correlation matrices among the strutures of those five countries' exports to the U.S.. during the 1970s and 1980s were estimated, with the export structure constructed as the shares of each of the 29 industrial sectors' exports as defined by the 3 digit KSIC in total exports to the U.S. from each individual country. In general, the correlation between each of the four Asian NIEs and Japan, and that between Hong Kong and Singapore, are all far below .5, while the ones among the Asian NIEs themselves (except for the one between Hong Kong and Singapore) all greatly exceed .5. If there exists a tendency on the part of the U.S. to import goods in each specific sector from different countries in a relatively constant proportion, the export structures of those countries will probably exhibit a high correlation. To take this hypothesis to the extreme, if the U.S. maintained an absolutely fixed ratio between its imports from any two countries for each of the 29 sectors, the correlation between the export structures of these two countries would be perfect. Therefore, since any two goods purchased in a fixed proportion could be classified as close complements, a high correlation between export structures will imply a complementary relationship between them. Conversely, low correlation would imply a competitive relationship. According to this interpretation, the pattern formed by the correlation coefficients among the five countries' export structures to the U.S. are consistent with the empirical findings of the regression analysis.

  • PDF

Content-based Recommendation Based on Social Network for Personalized News Services (개인화된 뉴스 서비스를 위한 소셜 네트워크 기반의 콘텐츠 추천기법)

  • Hong, Myung-Duk;Oh, Kyeong-Jin;Ga, Myung-Hyun;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • 제19권3호
    • /
    • pp.57-71
    • /
    • 2013
  • Over a billion people in the world generate new news minute by minute. People forecasts some news but most news are from unexpected events such as natural disasters, accidents, crimes. People spend much time to watch a huge amount of news delivered from many media because they want to understand what is happening now, to predict what might happen in the near future, and to share and discuss on the news. People make better daily decisions through watching and obtaining useful information from news they saw. However, it is difficult that people choose news suitable to them and obtain useful information from the news because there are so many news media such as portal sites, broadcasters, and most news articles consist of gossipy news and breaking news. User interest changes over time and many people have no interest in outdated news. From this fact, applying users' recent interest to personalized news service is also required in news service. It means that personalized news service should dynamically manage user profiles. In this paper, a content-based news recommendation system is proposed to provide the personalized news service. For a personalized service, user's personal information is requisitely required. Social network service is used to extract user information for personalization service. The proposed system constructs dynamic user profile based on recent user information of Facebook, which is one of social network services. User information contains personal information, recent articles, and Facebook Page information. Facebook Pages are used for businesses, organizations and brands to share their contents and connect with people. Facebook users can add Facebook Page to specify their interest in the Page. The proposed system uses this Page information to create user profile, and to match user preferences to news topics. However, some Pages are not directly matched to news topic because Page deals with individual objects and do not provide topic information suitable to news. Freebase, which is a large collaborative database of well-known people, places, things, is used to match Page to news topic by using hierarchy information of its objects. By using recent Page information and articles of Facebook users, the proposed systems can own dynamic user profile. The generated user profile is used to measure user preferences on news. To generate news profile, news category predefined by news media is used and keywords of news articles are extracted after analysis of news contents including title, category, and scripts. TF-IDF technique, which reflects how important a word is to a document in a corpus, is used to identify keywords of each news article. For user profile and news profile, same format is used to efficiently measure similarity between user preferences and news. The proposed system calculates all similarity values between user profiles and news profiles. Existing methods of similarity calculation in vector space model do not cover synonym, hypernym and hyponym because they only handle given words in vector space model. The proposed system applies WordNet to similarity calculation to overcome the limitation. Top-N news articles, which have high similarity value for a target user, are recommended to the user. To evaluate the proposed news recommendation system, user profiles are generated using Facebook account with participants consent, and we implement a Web crawler to extract news information from PBS, which is non-profit public broadcasting television network in the United States, and construct news profiles. We compare the performance of the proposed method with that of benchmark algorithms. One is a traditional method based on TF-IDF. Another is 6Sub-Vectors method that divides the points to get keywords into six parts. Experimental results demonstrate that the proposed system provide useful news to users by applying user's social network information and WordNet functions, in terms of prediction error of recommended news.

A Study on the Clustering Method of Row and Multiplex Housing in Seoul Using K-Means Clustering Algorithm and Hedonic Model (K-Means Clustering 알고리즘과 헤도닉 모형을 활용한 서울시 연립·다세대 군집분류 방법에 관한 연구)

  • Kwon, Soonjae;Kim, Seonghyeon;Tak, Onsik;Jeong, Hyeonhee
    • Journal of Intelligence and Information Systems
    • /
    • 제23권3호
    • /
    • pp.95-118
    • /
    • 2017
  • Recent centrally the downtown area, the transaction between the row housing and multiplex housing is activated and platform services such as Zigbang and Dabang are growing. The row housing and multiplex housing is a blind spot for real estate information. Because there is a social problem, due to the change in market size and information asymmetry due to changes in demand. Also, the 5 or 25 districts used by the Seoul Metropolitan Government or the Korean Appraisal Board(hereafter, KAB) were established within the administrative boundaries and used in existing real estate studies. This is not a district classification for real estate researches because it is zoned urban planning. Based on the existing study, this study found that the city needs to reset the Seoul Metropolitan Government's spatial structure in estimating future housing prices. So, This study attempted to classify the area without spatial heterogeneity by the reflected the property price characteristics of row housing and Multiplex housing. In other words, There has been a problem that an inefficient side has arisen due to the simple division by the existing administrative district. Therefore, this study aims to cluster Seoul as a new area for more efficient real estate analysis. This study was applied to the hedonic model based on the real transactions price data of row housing and multiplex housing. And the K-Means Clustering algorithm was used to cluster the spatial structure of Seoul. In this study, data onto real transactions price of the Seoul Row housing and Multiplex Housing from January 2014 to December 2016, and the official land value of 2016 was used and it provided by Ministry of Land, Infrastructure and Transport(hereafter, MOLIT). Data preprocessing was followed by the following processing procedures: Removal of underground transaction, Price standardization per area, Removal of Real transaction case(above 5 and below -5). In this study, we analyzed data from 132,707 cases to 126,759 data through data preprocessing. The data analysis tool used the R program. After data preprocessing, data model was constructed. Priority, the K-means Clustering was performed. In addition, a regression analysis was conducted using Hedonic model and it was conducted a cosine similarity analysis. Based on the constructed data model, we clustered on the basis of the longitude and latitude of Seoul and conducted comparative analysis of existing area. The results of this study indicated that the goodness of fit of the model was above 75 % and the variables used for the Hedonic model were significant. In other words, 5 or 25 districts that is the area of the existing administrative area are divided into 16 districts. So, this study derived a clustering method of row housing and multiplex housing in Seoul using K-Means Clustering algorithm and hedonic model by the reflected the property price characteristics. Moreover, they presented academic and practical implications and presented the limitations of this study and the direction of future research. Academic implication has clustered by reflecting the property price characteristics in order to improve the problems of the areas used in the Seoul Metropolitan Government, KAB, and Existing Real Estate Research. Another academic implications are that apartments were the main study of existing real estate research, and has proposed a method of classifying area in Seoul using public information(i.e., real-data of MOLIT) of government 3.0. Practical implication is that it can be used as a basic data for real estate related research on row housing and multiplex housing. Another practical implications are that is expected the activation of row housing and multiplex housing research and, that is expected to increase the accuracy of the model of the actual transaction. The future research direction of this study involves conducting various analyses to overcome the limitations of the threshold and indicates the need for deeper research.

Analysis of Football Fans' Uniform Consumption: Before and After Son Heung-Min's Transfer to Tottenham Hotspur FC (국내 프로축구 팬들의 유니폼 소비 분석: 손흥민의 토트넘 홋스퍼 FC 이적 전후 비교)

  • Choi, Yeong-Hyeon;Lee, Kyu-Hye
    • Journal of Intelligence and Information Systems
    • /
    • 제26권3호
    • /
    • pp.91-108
    • /
    • 2020
  • Korea's famous soccer players are steadily performing well in international leagues, which led to higher interests of Korean fans in the international leagues. Reflecting the growing social phenomenon of rising interests on international leagues by Korean fans, the study examined the overall consumer perception in the consumption of uniform by domestic soccer fans and compared the changes in perception following the transfers of the players. Among others, the paper examined the consumer perception and purchase factors of soccer fans shown in social media, focusing on periods before and after the recruitment of Heung-Min Son to English Premier League's Tottenham Football Club. To this end, the EPL uniform is the collection keyword the paper utilized and collected consumer postings from domestic website and social media via Python 3.7, and analyzed them using Ucinet 6, NodeXL 1.0.1, and SPSS 25.0 programs. The results of this study can be summarized as follows. First, the uniform of the club that consistently topped the league, has been gaining attention as a popular uniform, and the players' performance, and the players' position have been identified as key factors in the purchase and search of professional football uniforms. In the case of the club, the actual ranking and whether the league won are shown to be important factors in the purchase and search of professional soccer uniforms. The club's emblem and the sponsor logo that will be attached to the uniform are also factors of interest to consumers. In addition, in the decision making process of purchase of a uniform by professional soccer fan, uniform's form, marking, authenticity, and sponsors are found to be more important than price, design, size, and logo. The official online store has emerged as a major purchasing channel, followed by gifts for friends or requests from acquaintances when someone travels to the United Kingdom. Second, a classification of key control categories through the convergence of iteration correlation analysis and Clauset-Newman-Moore clustering algorithm shows differences in the classification of individual groups, but groups that include the EPL's club and player keywords are identified as the key topics in relation to professional football uniforms. Third, between 2002 and 2006, the central theme for professional football uniforms was World Cup and English Premier League, but from 2012 to 2015, the focus has shifted to more interest of domestic and international players in the English Premier League. The subject has changed to the uniform itself from this time on. In this context, the paper can confirm that the major issues regarding the uniforms of professional soccer players have changed since Ji-Sung Park's transfer to Manchester United, and Sung-Yong Ki, Chung-Yong Lee, and Heung-Min Son's good performances in these leagues. The paper also identified that the uniforms of the clubs to which the players have transferred to are of interest. Fourth, both male and female consumers are showing increasing interest in Son's league, the English Premier League, which Tottenham FC belongs to. In particular, the increasing interest in Son has shown a tendency to increase interest in football uniforms for female consumers. This study presents a variety of researches on sports consumption and has value as a consumer study by identifying unique consumption patterns. It is meaningful in that the accuracy of the interpretation has been enhanced by using a cluster analysis via convergence of iteration correlation analysis and Clauset-Newman-Moore clustering algorithm to identify the main topics. Based on the results of this study, the clubs will be able to maximize its profits and maintain good relationships with fans by identifying key drivers of consumer awareness and purchasing for professional soccer fans and establishing an effective marketing strategy.

A Study on the Establishment of Comparison System between the Statement of Military Reports and Related Laws (군(軍) 보고서 등장 문장과 관련 법령 간 비교 시스템 구축 방안 연구)

  • Jung, Jiin;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • 제26권3호
    • /
    • pp.109-125
    • /
    • 2020
  • The Ministry of National Defense is pushing for the Defense Acquisition Program to build strong defense capabilities, and it spends more than 10 trillion won annually on defense improvement. As the Defense Acquisition Program is directly related to the security of the nation as well as the lives and property of the people, it must be carried out very transparently and efficiently by experts. However, the excessive diversification of laws and regulations related to the Defense Acquisition Program has made it challenging for many working-level officials to carry out the Defense Acquisition Program smoothly. It is even known that many people realize that there are related regulations that they were unaware of until they push ahead with their work. In addition, the statutory statements related to the Defense Acquisition Program have the tendency to cause serious issues even if only a single expression is wrong within the sentence. Despite this, efforts to establish a sentence comparison system to correct this issue in real time have been minimal. Therefore, this paper tries to propose a "Comparison System between the Statement of Military Reports and Related Laws" implementation plan that uses the Siamese Network-based artificial neural network, a model in the field of natural language processing (NLP), to observe the similarity between sentences that are likely to appear in the Defense Acquisition Program related documents and those from related statutory provisions to determine and classify the risk of illegality and to make users aware of the consequences. Various artificial neural network models (Bi-LSTM, Self-Attention, D_Bi-LSTM) were studied using 3,442 pairs of "Original Sentence"(described in actual statutes) and "Edited Sentence"(edited sentences derived from "Original Sentence"). Among many Defense Acquisition Program related statutes, DEFENSE ACQUISITION PROGRAM ACT, ENFORCEMENT RULE OF THE DEFENSE ACQUISITION PROGRAM ACT, and ENFORCEMENT DECREE OF THE DEFENSE ACQUISITION PROGRAM ACT were selected. Furthermore, "Original Sentence" has the 83 provisions that actually appear in the Act. "Original Sentence" has the main 83 clauses most accessible to working-level officials in their work. "Edited Sentence" is comprised of 30 to 50 similar sentences that are likely to appear modified in the county report for each clause("Original Sentence"). During the creation of the edited sentences, the original sentences were modified using 12 certain rules, and these sentences were produced in proportion to the number of such rules, as it was the case for the original sentences. After conducting 1 : 1 sentence similarity performance evaluation experiments, it was possible to classify each "Edited Sentence" as legal or illegal with considerable accuracy. In addition, the "Edited Sentence" dataset used to train the neural network models contains a variety of actual statutory statements("Original Sentence"), which are characterized by the 12 rules. On the other hand, the models are not able to effectively classify other sentences, which appear in actual military reports, when only the "Original Sentence" and "Edited Sentence" dataset have been fed to them. The dataset is not ample enough for the model to recognize other incoming new sentences. Hence, the performance of the model was reassessed by writing an additional 120 new sentences that have better resemblance to those in the actual military report and still have association with the original sentences. Thereafter, we were able to check that the models' performances surpassed a certain level even when they were trained merely with "Original Sentence" and "Edited Sentence" data. If sufficient model learning is achieved through the improvement and expansion of the full set of learning data with the addition of the actual report appearance sentences, the models will be able to better classify other sentences coming from military reports as legal or illegal. Based on the experimental results, this study confirms the possibility and value of building "Real-Time Automated Comparison System Between Military Documents and Related Laws". The research conducted in this experiment can verify which specific clause, of several that appear in related law clause is most similar to the sentence that appears in the Defense Acquisition Program-related military reports. This helps determine whether the contents in the military report sentences are at the risk of illegality when they are compared with those in the law clauses.

A Study on Drainage Facilities in Mountainous Urban Neighborhood Parks - The Cases of Baebongsan Park and Ogeum Park in Seoul - (산지형 도시근린공원의 배수시설 특성 - 서울시 배봉산공원과 오금공원을 사례로 -)

  • Lee, Sang-Suk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • 제38권5호
    • /
    • pp.80-92
    • /
    • 2010
  • The purpose of this study was to analyze drainage facilities in mountainous urban neigbborhood parks--Baebongsan Park and Ogeum Park--in Seoul. Based on an analysis of existing drainage facilities, the volume of storm water runoff (VSW), the runoff rate of open channels(ROC), and the detention capacity of open charmels(DCOC) by each drainage watershed, the coefficient of runoff rate(CROC) as evaluated to be relevant between VSW and ROC and the coefficient of the detention capacity of open channe1s(CDCOC) as evaluated with DCOC compared to VSW were estimated and analyzed by parks and by watersheds. The results are as follows: 1. The total drainage area of Baebongsan Park was 34.13ha including surface runoff area(15.05ha; 44.09%), open channel area(l4.60ha; 42.78%), and natural waterway area(4.48ha; 13.13%). The total drainage area of Ogeum Park was 20.39ha including open channel area (10.14ha; 49.73%), ridge-side gutter area(7.17ha; 35.16%), surface runoff area (2.52ha; 12.36%), and natural waterway area (0.56ha; 2.75%). In Baebongsan Park, the portion of surface runoff was comparatively higher while the portion of artificial drainage area was higber in Ogeum Park. 2. In Baebongsan Park drainage districts were largely divided: VSW was $7.28m^3/s$ in total(average $0.23m^3/s$). Comparatively, tbe VSW in Ogeum Park, including smaller drainage districts, was $4.37m^3/s$ in total(average $0.12m^3/s$). 3. The ROC of Baebmgsan Park was $11.58m^3/s$ in total(average $0.77m^3/s$) and the CROC was 5.26, while in Ogeum Park, the ROC was $15.40m^3/s$(average $0.34m^3/s$) and tbe CROC was 8.87 higher than that of Baebongsan Because the size and slope of the open channel in Baebongsan Park was higher, the average ROC was larger, while tbe CROC of Ogeum Park was higher than that of Baebongsan Park, for the VSW in Ogeum Park was comparatively lower. 4. The DCOC in Baebongsan Park was $554.54m^3$ and the average of CDCOC was 179.83. That of Ogeum Park was $717.74m^3$ and the average of the CDCOC was 339.69, meaning that the DCOC of Ogeum Park was so much higber that drainage facilities in Ogeum Park were built intensively. This study was focused m the capacity of the drainage facilities in mountainous urban neighborhood parks by using the CROC to evaluate relevance between VSW and ROC and the CDCOC to evaluate the DCOC as compared with VSW. The devised methodology and coefficient for evaluating drainage facilities in mountainous urban neighborhood parks may he universally applicable through additional study. Further study m sustainable urban drainage systems for retaining rainwater in a reservoir and for enhancing ecological value is required in the near future.

A Study on the Growth Diagnosis and Management Prescription for Population of Retusa Fringe Trees in Pyeongji-ri, Jinan(Natural Monument No. 214) (진안 평지리 이팝나무군(천연기념물 제214호)의 생육진단 및 관리방안)

  • Rho, Jae-Hyun;Oh, Hyun-Kyung;Han, Sang-Yub;Choi, Yung-Hyun;Son, Hee-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • 제36권3호
    • /
    • pp.115-127
    • /
    • 2018
  • This study was attempted to find out the value of cultural assets through the clear diagnosis and prescription of the dead and weakness factors of the Population of Retusa Fringe Trees in Pyeongji-ri, Jinan(Natural Monument No. 214), The results are as follows. First, Since the designation of 13 natural monuments in 1968, since 1973, many years have passed since then. In particular, despite the removal of some of the buried soil during the maintenance process, such as retreating from the fence of the primary school after 2010, Second, The first and third surviving tree of the designated trees also have many branches that are dead, the leaves are dull, and the amount of leaves is small. vitality of tree is 'extremely bad', and the first branch has already been faded by a large number of branches, and the amount of leaves is considerably low this year, so that only two flowers are bloomed. The second is also in a 'bad'state, with small leaves, low leaf density, and deformed water. The largest number 1 in the world is added to the concern that the s coverd oil is assumed to be paddy soils. Third, It is found that the composition ratio of silt is high because it is known as '[silty loam(SiL)]'. In addition, the pH of the northern soil at pH 1 was 6.6, which was significantly different from that of the other soil. In addition, the organic matter content was higher than the appropriate range, which is considered to reflect the result of continuous application for protection management. Fourth, It is considered that the root cause of failure and growth of Jinan pyeongji-ri Population of Retusa Fringe Trees group is chronic syndrome of serious menstrual deterioration due to covered soil. This can also be attributed to the newly planted succession and to some of the deaths. Fifthly, It is urgent to gradually remove the subsoil part, which is estimated to be the cause of the initial damage. Above all, it is almost impossible to remove the coverd soil after grasping the details of the soil, such as clayey soil, which is buried in the rootstock. After removal of the coverd soil, a pestle is installed to improve the respiration of the roots and the ground with Masato. And the dead 4th dead wood and the 5th and 6th dead wood are the best, and the lower layer vegetation is mown. The viable neck should be removed from the upper surface, and the bark defect should undergo surgery and induce the development of blindness by vestibule below the growth point. Sixth, The underground roots should be identified to prepare a method to improve the decompression of the root and the respiration of the soil. It is induced by the shortening of rotten roots by tracing the first half of the rootstock to induce the generation of new roots. Seventh, We try mulching to suppress weed occurrence, trampling pressure, and soil moisturizing effect. In addition, consideration should be given to the fertilization of the foliar fertilizer, the injection of the nutrients, and the soil management of the inorganic fertilizer for the continuous nutrition supply. Future monitoring and forecasting plans should be developed to check for changes continuously.

Studies on a Factor Affecting Composts Maturity During Composting of SWine Manure (돈분 퇴비화 중 부숙도에 미치는 영향인자 구명)

  • Kim, T.I.;Song, J. I.;Yang, C.B.;Kim, M.K.
    • Journal of Animal Science and Technology
    • /
    • 제46권2호
    • /
    • pp.261-272
    • /
    • 2004
  • This study was conducted to investigate indices affecting composts maturity for swine manure compost produced in a commercial composting facility with air-forced from the bottom. The composting was made of swine manure mixed with puffing rice hull(6: 4) and turned by escalating agitator twice a day. Composting samples were collected periodically during a 45-d composting cycle at that system, showing that indices of Ammonium-N to Nitrate-N ratio were sensitive indicators of composting quality. Pile temperature maintained more than 62$^{\circ}C$ and water contents decreased about 20% for 25days of composting. A great variety and high numbers of aerobic thermophilic heterotropic microbes playing critical roles in stability of composts have been examined in the final composts, sbowing that they were detected $10^8$ to $10^{10}$ $CFUg^{-1}$ in mesophilic bacteria, $10^3$ - $10^4$ in fungi and $10^6$ - $10^8$ in actinomycetes, respectively. The results of this study for detennining a factor affecting compost stability evaluations based on composting steps were as follows; 1. Ammonium-N concentrations were highest at the beginning of composting, reaching approximately 421mg/kg. However Ammonium-N concentrations were lower during curing, reaching approximately l04mg/kg just after 45 day. The ratio between $NH_4-N$ and $NO_3-N$ was above II at the beginning of composting and less than 2 at the final step(45 day). 2. Seed germination Index was dependent upon the compost phytotoxicity and its nutrition. The phytotocity caused the GI to low during the period of active composting(till 25 days of composting time) depending on the value of the undiluted. After 25 days of composting time, the GI was dependent upon compost nutrition. The Gennination index of the final step was calculated at over 80 without regard to treatments. 3. E4: E6 ratio in humic acid of composts was correlatively decreased from 8.86 to 6.76 during the period of active composting. After 25 days of composting time, the E4: E6 was consistently decreased from 6.76 to 4.67($r^2$ of total composting period was 0.95). 4. Water soluble carbon had a tendency to increase from 0.54% to 0.78%during the period of active composting. After 25 days of composting time, it was consistently decreased from 0.78% to 0.42%. Water soluble nitrogen increased from 0.22% to 0.32% during the period of 15 days after initial composting while decreased from 0.32% to 0.21% after 15days of composting. In consequence, the correlation coefficient($r^2$) between water soluble carbon and water soluble nitrogen was 0.12 during the period of active composting mule was 0.50 after 25 days of composting time

Development of the Accident Prediction Model for Enlisted Men through an Integrated Approach to Datamining and Textmining (데이터 마이닝과 텍스트 마이닝의 통합적 접근을 통한 병사 사고예측 모델 개발)

  • Yoon, Seungjin;Kim, Suhwan;Shin, Kyungshik
    • Journal of Intelligence and Information Systems
    • /
    • 제21권3호
    • /
    • pp.1-17
    • /
    • 2015
  • In this paper, we report what we have observed with regards to a prediction model for the military based on enlisted men's internal(cumulative records) and external data(SNS data). This work is significant in the military's efforts to supervise them. In spite of their effort, many commanders have failed to prevent accidents by their subordinates. One of the important duties of officers' work is to take care of their subordinates in prevention unexpected accidents. However, it is hard to prevent accidents so we must attempt to determine a proper method. Our motivation for presenting this paper is to mate it possible to predict accidents using enlisted men's internal and external data. The biggest issue facing the military is the occurrence of accidents by enlisted men related to maladjustment and the relaxation of military discipline. The core method of preventing accidents by soldiers is to identify problems and manage them quickly. Commanders predict accidents by interviewing their soldiers and observing their surroundings. It requires considerable time and effort and results in a significant difference depending on the capabilities of the commanders. In this paper, we seek to predict accidents with objective data which can easily be obtained. Recently, records of enlisted men as well as SNS communication between commanders and soldiers, make it possible to predict and prevent accidents. This paper concerns the application of data mining to identify their interests, predict accidents and make use of internal and external data (SNS). We propose both a topic analysis and decision tree method. The study is conducted in two steps. First, topic analysis is conducted through the SNS of enlisted men. Second, the decision tree method is used to analyze the internal data with the results of the first analysis. The dependent variable for these analysis is the presence of any accidents. In order to analyze their SNS, we require tools such as text mining and topic analysis. We used SAS Enterprise Miner 12.1, which provides a text miner module. Our approach for finding their interests is composed of three main phases; collecting, topic analysis, and converting topic analysis results into points for using independent variables. In the first phase, we collect enlisted men's SNS data by commender's ID. After gathering unstructured SNS data, the topic analysis phase extracts issues from them. For simplicity, 5 topics(vacation, friends, stress, training, and sports) are extracted from 20,000 articles. In the third phase, using these 5 topics, we quantify them as personal points. After quantifying their topic, we include these results in independent variables which are composed of 15 internal data sets. Then, we make two decision trees. The first tree is composed of their internal data only. The second tree is composed of their external data(SNS) as well as their internal data. After that, we compare the results of misclassification from SAS E-miner. The first model's misclassification is 12.1%. On the other hand, second model's misclassification is 7.8%. This method predicts accidents with an accuracy of approximately 92%. The gap of the two models is 4.3%. Finally, we test if the difference between them is meaningful or not, using the McNemar test. The result of test is considered relevant.(p-value : 0.0003) This study has two limitations. First, the results of the experiments cannot be generalized, mainly because the experiment is limited to a small number of enlisted men's data. Additionally, various independent variables used in the decision tree model are used as categorical variables instead of continuous variables. So it suffers a loss of information. In spite of extensive efforts to provide prediction models for the military, commanders' predictions are accurate only when they have sufficient data about their subordinates. Our proposed methodology can provide support to decision-making in the military. This study is expected to contribute to the prevention of accidents in the military based on scientific analysis of enlisted men and proper management of them.

Stock-Index Invest Model Using News Big Data Opinion Mining (뉴스와 주가 : 빅데이터 감성분석을 통한 지능형 투자의사결정모형)

  • Kim, Yoo-Sin;Kim, Nam-Gyu;Jeong, Seung-Ryul
    • Journal of Intelligence and Information Systems
    • /
    • 제18권2호
    • /
    • pp.143-156
    • /
    • 2012
  • People easily believe that news and stock index are closely related. They think that securing news before anyone else can help them forecast the stock prices and enjoy great profit, or perhaps capture the investment opportunity. However, it is no easy feat to determine to what extent the two are related, come up with the investment decision based on news, or find out such investment information is valid. If the significance of news and its impact on the stock market are analyzed, it will be possible to extract the information that can assist the investment decisions. The reality however is that the world is inundated with a massive wave of news in real time. And news is not patterned text. This study suggests the stock-index invest model based on "News Big Data" opinion mining that systematically collects, categorizes and analyzes the news and creates investment information. To verify the validity of the model, the relationship between the result of news opinion mining and stock-index was empirically analyzed by using statistics. Steps in the mining that converts news into information for investment decision making, are as follows. First, it is indexing information of news after getting a supply of news from news provider that collects news on real-time basis. Not only contents of news but also various information such as media, time, and news type and so on are collected and classified, and then are reworked as variable from which investment decision making can be inferred. Next step is to derive word that can judge polarity by separating text of news contents into morpheme, and to tag positive/negative polarity of each word by comparing this with sentimental dictionary. Third, positive/negative polarity of news is judged by using indexed classification information and scoring rule, and then final investment decision making information is derived according to daily scoring criteria. For this study, KOSPI index and its fluctuation range has been collected for 63 days that stock market was open during 3 months from July 2011 to September in Korea Exchange, and news data was collected by parsing 766 articles of economic news media M company on web page among article carried on stock information>news>main news of portal site Naver.com. In change of the price index of stocks during 3 months, it rose on 33 days and fell on 30 days, and news contents included 197 news articles before opening of stock market, 385 news articles during the session, 184 news articles after closing of market. Results of mining of collected news contents and of comparison with stock price showed that positive/negative opinion of news contents had significant relation with stock price, and change of the price index of stocks could be better explained in case of applying news opinion by deriving in positive/negative ratio instead of judging between simplified positive and negative opinion. And in order to check whether news had an effect on fluctuation of stock price, or at least went ahead of fluctuation of stock price, in the results that change of stock price was compared only with news happening before opening of stock market, it was verified to be statistically significant as well. In addition, because news contained various type and information such as social, economic, and overseas news, and corporate earnings, the present condition of type of industry, market outlook, the present condition of market and so on, it was expected that influence on stock market or significance of the relation would be different according to the type of news, and therefore each type of news was compared with fluctuation of stock price, and the results showed that market condition, outlook, and overseas news was the most useful to explain fluctuation of news. On the contrary, news about individual company was not statistically significant, but opinion mining value showed tendency opposite to stock price, and the reason can be thought to be the appearance of promotional and planned news for preventing stock price from falling. Finally, multiple regression analysis and logistic regression analysis was carried out in order to derive function of investment decision making on the basis of relation between positive/negative opinion of news and stock price, and the results showed that regression equation using variable of market conditions, outlook, and overseas news before opening of stock market was statistically significant, and classification accuracy of logistic regression accuracy results was shown to be 70.0% in rise of stock price, 78.8% in fall of stock price, and 74.6% on average. This study first analyzed relation between news and stock price through analyzing and quantifying sensitivity of atypical news contents by using opinion mining among big data analysis techniques, and furthermore, proposed and verified smart investment decision making model that could systematically carry out opinion mining and derive and support investment information. This shows that news can be used as variable to predict the price index of stocks for investment, and it is expected the model can be used as real investment support system if it is implemented as system and verified in the future.