• Title/Summary/Keyword: joint stability

Search Result 886, Processing Time 0.029 seconds

A Study on the Stability and Mechanism of Three-Hinge Failure (Three-Hinge 파괴의 메커니즘 및 안정성에 관한 분석)

  • Moon, Joon-Shik;Park, Woo-Jeong
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.4
    • /
    • pp.5-15
    • /
    • 2017
  • Three-hinge failure occurs in a jointed rock slope with a joint set parallel with slope and a conjugate joint set. Limit Equilibrium Method (LEM) and Finite Element Method (FEM) which are commonly used for slope design, are not suitable for evaluating stability against three-hinge failure, and this study performed parametric study to analyze the failure mechanism and to find influence factors causing three-hinge failure using UDEC which is a commercial two-dimensional DEM based numerical program. Numerical analyses were performed for various joint structural conditions and joint properties as well as ground water conditions. It was found that pore water pressure is the main factor triggering the three-hinge failure and the mode of failure depends on friction angle of basal joint and bedding joint set. The results obtained from this study can be used for adequate and economic footwall slope reinforcement design and construction.

The Effect of Market Structure on the Performance of China's Banking Industry: Focusing on the Differences between Nation-Owned Banks and Joint-Stock Banks (개혁개방 이후 중국 은행산업의 구조와 성과: 국유은행과 주식제 은행의 차이를 중심으로)

  • Ze-Hui Liu;Dong-Ook Choi
    • Asia-Pacific Journal of Business
    • /
    • v.14 no.4
    • /
    • pp.431-444
    • /
    • 2023
  • Purpose - This study applies the traditional Structure-Conduct-Performance (SCP) model from industrial organization theory to investigate the relationship between market structure and performance in China's banking industry. Design/methodology/approach - For analysis, financial data from the People's Bank of China's "China Financial Stability Report" and financial reports of 6 state-owned banks and 11 joint-stock banks for the period 2010 to 2021 were collected to create a balanced panel dataset. The study employs panel fixed-effects regression analysis to assess the impact of changes in market structure and ownership structure on performance variables including return on asset, profitability, costs, and non-performing loan ratios. Findings - Empirical findings highlight significant differences in the effects of market structure between state-owned and joint-stock banks. Notably, increased market competition positively correlates with higher profits for state-owned banks and with lower costs for joint-stock banks. Research implications or Originality - State-owned banks demonstrate larger scale and stability, yet they struggle to respond effectively to market shifts. Conversely, joint-stock banks face challenges in raising profitability against competitive pressures. Additionally, the study emphasizes the importance for Chinese banks to strengthen risk management due to the increase of non-performing loans with competition. The results provide insights into reform policies for Chinese banks regarding the involvement of private sector in the context of market liberalization process in China.

Literature Study About Shoulder Joint Function of Overhead Players (상지사용 선수들의 어깨관절기능에 관한 문헌연구)

  • Kim, In-Seop;Lee, Byoung-Kwon;Cho, Mi-Suk;Jang, Chel;Bae, Sung-Soo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.2 no.1
    • /
    • pp.65-72
    • /
    • 2007
  • Purpose : The purpose of this study is a research on the evaluation about shoulder joint function. Methods : It's based on the reference books. Result : Shoulder joint has the biggest ROM in human body, and it is a joint that stability and mobility are required at the same time sport art. Especially, function of shoulder joint than other what item players of more important overhead item correct diagnosis and evaluation for shoulder joint injury require. Measurement equipment for shoulder joint is helping a lot of incorrect diagnosis and analysis about shoulder joint function of overhead players through a lot of developments. Conclusion : I think a lot of helps torture in motor ability elevation of players and player protection as analysis by special quality in item of overhead players.

  • PDF

A hybrid method for dynamic stiffness identification of bearing joint of high speed spindles

  • Zhao, Yongsheng;Zhang, Bingbing;An, Guoping;Liu, Zhifeng;Cai, Ligang
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.141-159
    • /
    • 2016
  • Bearing joint dynamic parameter identification is crucial in modeling the high speed spindles for machining centers used to predict the stability and natural frequencies of high speed spindles. In this paper, a hybrid method is proposed to identify the dynamic stiffness of bearing joint for the high speed spindles. The hybrid method refers to the analytical approach and experimental method. The support stiffness of spindle shaft can be obtained by adopting receptance coupling substructure analysis method, which consists of series connected bearing and joint stiffness. The bearing stiffness is calculated based on the Hertz contact theory. According to the proposed series stiffness equation, the stiffness of bearing joint can be separated from the composite stiffness. Then, one can obtain the bearing joint stiffness fitting formulas and its variation law under different preload. An experimental set-up with variable preload spindle is developed and the experiment is provided for the validation of presented bearing joint stiffness identification method. The results show that the bearing joint significantly cuts down the support stiffness of the spindles, which can seriously affects the dynamic characteristic of the high speed spindles.

Effect of Taping Technique Applied to Adults with Knee Instability on Landing Error Scoring System, Lower Extremity Joint Angle

  • Son, Jin-Kyu;Park, Sam-Ho;Lee, Myung-Mo
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.4
    • /
    • pp.406-413
    • /
    • 2021
  • Objective: The purpose of this study was to investigate effects of taping technique applied to knee instability. Design: Cross sectional study. Methods: Twenty-six participants with knee instabilityparticipated in this study. They were randomly assigned to the Kinesio taping (KT) group (n=13) and the dynamic taping (DT) group (n=13). Both groups applied knee stabilization taping techniques. In order to compare the effects of each taping technique, the change in the landing error scoring system (LESS) and lower extremity joint angle wasrecorded before and after the intervention. Results: Both groups significantly decreased in the change before and after the LESS (p<0.05). At the joint angle of the lower extremities, KT group significantly reduced the valgus angle at the max knee flexion (p<0.05). In DT group knee joint flexion and hip joint flexion angles were significantly increased at foot contact (p<0.05). In max knee flexion, the knee joint flexion angle was significantly increased (p<0.05). In foot contact, max knee flexion, the knee joint valgus angle was significantly increased (p<0.05). DT group showed more significant changes in knee joint flexion angle at foot contact and hip joint flexion angle at max knee flexion. Conclusions: Dynamic taping is a clinically applicable intervention method for lowering the risk of non-contact injury in participants with knee instability and for knee stability during rehabilitation exercises.

Clinical Application and Limitations of the Capsular Pattern (관절낭 패턴의 임상적 적용과 한계)

  • Lim, Wootaek
    • Physical Therapy Korea
    • /
    • v.28 no.1
    • /
    • pp.13-17
    • /
    • 2021
  • A normal range of motion is essential for performing activities of daily living. The capsular pattern is the proportional motion restriction in range of motion during passive exercises due to tightness of the joint capsule. Although the capsular pattern is widely referred to in clinical practice, there is no scientific evidence to support the concept. In this review, the appropriateness of the capsular pattern for evaluation of joint pathology was assessed. In the Textbook of Orthopaedic Medicine written by Cyriax, the capsular pattern did not specify how much reduction in angular motion is considered motion restriction. As the definition proposed initially was unclear, different methods have been used in previous studies investigating capsular pattern. In addition, the capsular pattern described all the major joints of the human body, but only the hip joint, knee joint, and shoulder joint were studied in experimental studies. Sensitivity and specificity were reported in one study and were meaningful in specific pathologies (loss of extension to loss of flexion). There was no consensus on the reliability and validity. In summary, the capsular pattern suggested by Cyriax or Kaltenborn is not supported or applies only to certain conditions. Various components around a joint complement each other and provide stability to the joint. It is recommended that the therapist perform multiple assessments rather than rely on a single assessment when evaluating joints.

The Effects of Running Shoes' Midsole Properties on Impact and Lower Extremity Joint's Dynamic Stability

  • Ryu, Sihyun;Gil, Ho-Jong
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.4
    • /
    • pp.290-296
    • /
    • 2021
  • Objective: The purpose of this research is to examine the effects of three types of different running shoes with different properties on impact variables (PVRGF and VLR) and the lower extremity joint's dynamic stability variables (LyEs of DPA, IEA, FEA, DPAV, IEAV, and FEAV) during running. Method: The participants in this research were 12 males (Age: 22.0 ± 3.3 years, Height: 177.2 ± 4.1 cm, Weight: 74.3 ± 9.6 kg). One type of N company's running shoes and two types (FA, FB) of F company's running shoes were used. As for the properties of the running shoes, thickness (mm), dwell time (ms), peak acceleration (m/s2), and energy return (%) were measured. The motions running at 3.5 m/s on a treadmill (Instrumented treadmill, Bertec, USA) wearing each type of running shoes were analyzed. Results: Although the VLR of the thick running shoes (FB) was smaller than that of the other running shoes (N, FA), the LyEs of PVGRF and DPA were larger (p<.05). Even though the running shoes' dwell time (i.e., impact absorption time) and peak acceleration showed a positive correlation with the LyEs of DPAV, IEAV, and FEAV, the energy return showed a negative correlation (p<.05). Conclusion: Our results indicated that the running shoes with excellent impact absorption function are predicted to be suitable for running beginners who need to reduce the burden of the lower extremity joint during running. The running shoes with excellent energy return are expected to be suitable for mid-and long-distance running elite athletes or marathoners to whom stability and consistency are essential during running.

Fault Tolerance in Control of Autonomous Legged Robots (자율 보행 로봇을 위한 내고장성 제어)

  • 양정민
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.943-951
    • /
    • 2003
  • A strategy for fault-tolerant gaits of autonomous legged robots is proposed. A legged robot is considered to be fault tolerant with respect to a given failure if it is guaranteed to be capable of walking maintaining its static stability after the occurrence of the failure. The failure concerned in this paper is a locked joint failure for which a joint in a leg cannot move and is locked in place. If a failed joint is locked, the workspace of the resulting leg is constrained, but legged robots have fault tolerance capability to continue static walking. An algorithm for generating fault-tolerant gaits is described and, especially, periodic gaits are presented for forward walking of a hexapod robot with a locked joint failure. The leg sequence and the formula of the stride length are analytically driven based on gait study and robot kinematics. The transition procedure from a normal gait to the proposed fault-tolerant gait is shown to demonstrate the applicability of the proposed scheme.

Study on Joining Strength Improvement of Solder Joint with Pb Free Solder (Pb Free 솔더를 사용한 솔더 접합부의 접합 강도 향상에 관한 연구)

  • 신영의;김영탁
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.36-42
    • /
    • 1997
  • In this paper, stability of initial strength at solder joint with lead free solders, such as Sn-In (52-48%) and Sn-Ag (96.5-3.5wt%) was studied. To obtain at solder joint with high quality, it is very important to control the temperature at the interface of solder joints. It is found that the thermal EMF (electro motive force) occurs betwee lead frame and copper pad on a substrate during reflow soldering process using heated tip. As a result of control the temperature at interface of solder joints, variation of initial strength at solder joint decreases from about $\pm40%$ to $\pm20%$, and it is realized Pb free soldering process using Sn/In and Sn-Ag solder paste.

  • PDF

A Review of Patellofemoral Angle (슬개대퇴골각에 관한 고찰)

  • Bae, Sung-Soo;Kim, Ho-Bong;Lee, Sang-Yong;Kim, Eun-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.1
    • /
    • pp.197-204
    • /
    • 2001
  • Knee is a middle joint in lower extremity and has relationship with hip joint and ankle joint alignment. Therefore the knee joint alignment is very important in aspect of biomechanically. Knee joint alignment depend upon patellar stability. Instability of the patellofemoral articulation, in the form of patellar subluxation or dislocation may be associated with a number of factors. Normal range of patellofemoral angle is very different by the reporter and by the gender also.

  • PDF