• Title/Summary/Keyword: joint prediction

Search Result 435, Processing Time 0.035 seconds

Strength Prediction of Bolted Woven Composite Joint Using Characteristic Length (특성 길이를 이용한 평직 복합재 볼트 체결부의 강도 예측)

  • Park Seung-Bum;Byun, Joon-Hyung;Ahn, Kook-Chan
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • A study on predicting the joint strength of mechanically fastened woven glass/epoxy composite has been performed. An experimental and numerical study were carried out to determine the characteristic length and joint strength of composite joint. The characteristic lengths for tension and compression were determined from the tensile and compressive test with a hole respectively. The characteristic lengths were evaluated by applying the point stress failure criterion to a specimen containing a hole at the center subjected to tensile loading and a specimen containing a half circular notch at the center subjected to compressive load. The joint strength was evaluated by the Tsai-Wu and Yamada-Sun failure criterion on the characteristic curve. The predicted results of the joint strength were compared with experimental results.

Tokamak plasma disruption precursor onset time study based on semi-supervised anomaly detection

  • X.K. Ai;W. Zheng;M. Zhang;D.L. Chen;C.S. Shen;B.H. Guo;B.J. Xiao;Y. Zhong;N.C. Wang;Z.J. Yang;Z.P. Chen;Z.Y. Chen;Y.H. Ding;Y. Pan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1501-1512
    • /
    • 2024
  • Plasma disruption in tokamak experiments is a challenging issue that causes damage to the device. Reliable prediction methods are needed, but the lack of full understanding of plasma disruption limits the effectiveness of physics-driven methods. Data-driven methods based on supervised learning are commonly used, and they rely on labelled training data. However, manual labelling of disruption precursors is a time-consuming and challenging task, as some precursors are difficult to accurately identify. The mainstream labelling methods assume that the precursor onset occurs at a fixed time before disruption, which leads to mislabeled samples and suboptimal prediction performance. In this paper, we present disruption prediction methods based on anomaly detection to address these issues, demonstrating good prediction performance on J-TEXT and EAST. By evaluating precursor onset times using different anomaly detection algorithms, it is found that labelling methods can be improved since the onset times of different shots are not necessarily the same. The study optimizes precursor labelling using the onset times inferred by the anomaly detection predictor and test the optimized labels on supervised learning disruption predictors. The results on J-TEXT and EAST show that the models trained on the optimized labels outperform those trained on fixed onset time labels.

Prediction of Natural Frequency via Change in Design Variable on Connection Area of Lap Joint (겹치기 이음부의 설계변수 변화에 따른 고유진동수의 예측)

  • Yun, Seong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.57-62
    • /
    • 2019
  • This paper describes the prediction of eigenfrequencies due to changes in stiffness and mass in the connection area of the lap joint beam in terms of linear and torsional stiffness as well as connection length. The sensitivities of mass and stiffness in the finite element model were derived by using the first-order differential and algebraic equation and were thereafter applied to obtain new natural frequencies that were compared with theoretical exact solutions. Newly predicted natural frequencies due to only a change in stiffness were in relatively good agreement with those in lower modes for rigid joints, while further investigation was needed for flexible joints. On the other hand, only the change in mass resulted in a large discrepancy in the flexible joint case. It may be strongly anticipated that this study will provide a useful tool for estimating modal parameters by change in any design variable, such as the structural dimension, material property, or connection type for a large-scale structure, even though the proposed methodology is currently limited to a jointed beam.

Analysis of the Dynamical Characteristics and Prediction of Stiffness for the Joint between Members (부재간 결합부의 동적 특성 분석 및 강성 예측)

  • Yun, Seong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.58-64
    • /
    • 2019
  • This paper describes the analysis of dynamic characteristics and prediction of the stiffness for the joint between structural members. In the process of deriving the governing equations, the stiffness values responsible for the moment and shear force were modelled by using linear and torsional springs in the middle of a clamped-clamped beam. The sensitivities of the natural frequency and modal assurance criterion were investigated as a function of the dimensionless linear and torsional spring stiffness. The reliability of the predictions for the linear and torsional stiffness values was verified by the inverse computations of the stiffness matrix. The predictive and exact theoretical stiffness values were compared for the stiffness element in the finite element formulation, and their results show an excellent correlation. It is strongly anticipated that although the proposed methodology is currently limited to the analytical utilization, it will provide a useful tool to estimate unknown joint stiffness values based on the experimental natural frequency and mode shape.

Fast Prediction Unit Decision Using Quantized Transform Coefficient (양자화된 트랜스폼 계수를 이용한 고속 Prediction Unit 결정방법)

  • Gweon, Ryeong-Hee;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.725-733
    • /
    • 2012
  • MPEG and VCEG have constituted a collaboration team called JCT-VC(Joint Collaborative Team on Video Coding) and have been developing the HEVC(High Efficiency Video Coding) standard. The next generation video coding standard HEVC shows higher compression rate compared with the H.264/AVC standard, but the encoder computational complexity of the HEVC encoder is significantly high. In order to reduce this computational complexity in the HEVC encoder, a fast prediction unit decision is proposed. The proposed fast prediction unit decision method reduces the encoder complexity by skipping the remaining prediction units if the current prediction unit does not have any non-zero quantized transform coefficient. The proposed method reduces the encoder computational complexity by 50.3% comparing with HM6.0 but it maintains the same level of coding efficiency.

Prediction of the Fractures at Inexcavation Spaces Based on the Existing Data (터널의 굴착면 전반부에 분포하는 절리의 예측)

  • Hwang, Sang-Gi
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.643-648
    • /
    • 2014
  • Understanding of fracture networks and rock mass properties during tunnel construction is extremely important for the prediction of dangers during excavation, and for deciding on appropriate excavation techniques and support. However, rapid construction process do not allow sufficient time for surveys and interpretations for spatial distributions of fractures and rock mass properties. This study introduces a new statistical approach for predicting joint distributions at foreside of current excavation face during the excavation process. The proposed methodology is based on a cumulative space diagram for joint sets. The diagram displays the cumulative spacing between adjacent joints on the vertical axis and the sequential position of each joint plotted at equally spaced intervals on the horizontal axis. According to the diagram, the degree of linearity of points representing the regularity of joint spacing; a linear trend of the points indicates that the joints are evenly spaced, with the slope of the line being directly related to the spacing. The linear points which are stepped indicates that the fracture set show clustered distribution. A clustered pattern within the linear group of points indicates a clustered joint distribution. Fractures surveyed from an excavated space can be plotted on this diagram, and the diagram can then be extended further according to the plotted diagram pattern. The extension of the diagram allows predictions about joint spacing in areas that have not yet been excavated. To test the model, we collected and analyzed data during excavation of a 10-m-long tunnel. Fractures in a 3-m zone behind the excavation face were predicted during the excavation, and the predictions were compared with observations. The methodology yielded reasonably good predictions of joint locations.

Dissimilar Friction Welding of Engine Exhaustive Valve and High Temperature Creep Prediction and Their Real-Time Evaluation by AE (엔진배기밸브의 내열강 이종재 마찰용접의 최적화와 고온 크리프의 실시간 예측 및 AE에 의한 실시간 평가)

  • Lee, Sang-Guk;Oh, Jung-Hwan;Oh, Sae-Kyoo
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.1-10
    • /
    • 1999
  • The engine exhaustive valve became essential as the important element. The dissimmilar welding method of exhaustive valve head to stem was asked for manufacturing the engine exhaustive valve, for which the electric resistance are welding has been conventionally used, resulting in poor quality of the welded joint. In this paper, not only the development of optimizing of friction welding with more reliability and more applicability but also the development of in-process real-time weld qudlity(such as strength and toughness) evaluation technique by acoustic emission for friction welding of the engine exhaustive valve(SUH3-SUH35 dissimilar steels) were perfomed. The high temperature(500, 500, 600$^{circ}$C) creep properties prediction of the friction welded joint of SUH3-SUH35 was investigated relating to the initial strain meethod(ISM) as a new approach, resulting in obtaining an experimental equation of creep life prediction.

  • PDF

Prediction of Moments and Muscle Forces at the Knee Joint in Deep Flexion (무릎 관절의 고굴곡에 대한 모멘트와 근력의 추정)

  • Cho, Bong-Jo;Moon, Byoung-Young;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1262-1269
    • /
    • 2004
  • This study predicts muscle forces acting on the lower extremity when the knee joint is in deep flexion. The whole body was approximated as a link model, and then the moment equilibrium equations at the lower extremity joints were derived far given reaction farces against the ground. Measurement of deep flexion was carried out by placing ten markers on the body. This study calculated the moment acting at each Joint from the equations of force and moment, classified the complicated muscles around the knee joint, and then predicted the muscle forces to balance the joint moment. Two models were proposed in this study: the simpler one that consists of three groups of muscle and the more detailed one of nine groups of muscle.

Prediction of Muscle Forces for the Knee Joint in Deep Flexion (고굴곡 동작 해석을 위한 무릎 관절 작용 근력의 분류)

  • Cho, Bong-Jo;Son, Kwon;Moon, Byung-Young
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1288-1293
    • /
    • 2003
  • This study predicts muscle forces acting on the lower extremity when the knee joint is in deep flexion. The whole bodies were approximated as a link model, and then the moment equilibrium equations at the lower extremity joints were derived for given reaction forces against the ground. Measurement of deep flexion was carried out by placing ten markers on the body. This study calculated the moment acting at each joint from the equations of force and moment, classified the complicated muscles around the knee joint. and then predicted the muscle forces to balance the joint moment. Two models were proposed in this study: the simpler one that consists of three groups of muscle and the more detailed one of nine groups of muscle.

  • PDF