• Title/Summary/Keyword: joint power

Search Result 985, Processing Time 0.029 seconds

Design of CAVLC Decoder for H.264/AVC (H.264/AVC용 CAVLC 디코더의 설계)

  • Jung, Duck-Young;Sonh, Seung-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1104-1114
    • /
    • 2007
  • Digital video compression technique has played an important role that enables efficient transmission and storage of multimedia data where bandwidth and storage space are limited. The new video coding standard, H.264/AVC, developed by Joint Video Team(JVT) significantly outperforms previous standards in compression performance. Especially, variable length code(VLC) plays a crucial pun in video and image compression applications. H.264/AVC standard adopted Context-based Adaptive Variable Length Coding(CAVLC) as the entropy coding method. CAVLC of H.264/AVC requires a large number of the memory accesses. This is a serious problem for applications such as DMB and video phone service because of the considerable amount of power that is consumed in accessing the memory. In order to overcome this problem in this paper, we propose a variable length technique that implements memory-free coeff_token, level, and run_before decoding based on arithmetic operations and using only 70% of the required memory at total_zero variable length decoding.

Future Development Direction of Water Quality Modeling Technology to Support National Water Environment Management Policy (국가 물환경관리정책 지원을 위한 수질모델링 기술의 발전방향)

  • Chung, Sewoong;Kim, Sungjin;Park, Hyungseok;Seo, Dongil
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.621-635
    • /
    • 2020
  • Water quality models are scientific tools that simulate and interpret the relationship between physical, chemical and biological reactions to external pollutant loads in water systems. They are actively used as a key technology in environmental water management. With recent advances in computational power, water quality modeling technology has evolved into a coupled three-dimensional modeling of hydrodynamics, water quality, and ecological inputs. However, there is uncertainty in the simulated results due to the increasing model complexity, knowledge gaps in simulating complex aquatic ecosystem, and the distrust of stakeholders due to nontransparent modeling processes. These issues have become difficult obstacles for the practical use of water quality models in the water management decision process. The objectives of this paper were to review the theoretical background, needs, and development status of water quality modeling technology. Additionally, we present the potential future directions of water quality modeling technology as a scientific tool for national environmental water management. The main development directions can be summarized as follows: quantification of parameter sensitivities and model uncertainty, acquisition and use of high frequency and high resolution data based on IoT sensor technology, conjunctive use of mechanistic models and data-driven models, and securing transparency in the water quality modeling process. These advances in the field of water quality modeling warrant joint research with modeling experts, statisticians, and ecologists, combined with active communication between policy makers and stakeholders.

Effects of 3-D Fracture Tensor Parameters on Deformability of Fractured Rock Masses (삼차원 절리텐서 파라미터가 절리성 암반의 변형특성에 미치는 영향)

  • Ryu, Seongjin;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.66-81
    • /
    • 2021
  • The effects of directional fracture tensor components and first invariant of fracture tensor on deformation moduli and shear moduli of fractured rock masses is analyzed based on regression analysis performed between 3-D fracture tensor parameters and deformability of DFN blocks. Using one or two deterministic joint sets, a total of 224 3-D discrete fracture network (DFN) cube blocks were generated with various configurations of deterministic density and probabilistic size distribution. The fracture tensor parameters were calculated for each generated DFN systems. Also, deformability moduli with respect to three perpendicular direction of the DFN cube blocks were estimated based on distinct element method. The larger the first invariant of fracture tensor, the smaller the values for the deformability moduli of the DFN blocks. These deformability properties present an asymptotic pattern above the certain threshold. It is found that power-law function describes the relationship between the directional deformability moduli and the corresponding fracture tensor components estimated in same direction.

A Study on the Intention to use the Artificial Intelligence-based Drug Discovery and Development System using TOE Framework and Value-based Adoption Model (TOE 프레임워크와 가치기반수용모형 기반의 인공지능 신약개발 시스템 활용의도에 관한 실증 연구)

  • Kim, Yeongdae;Lee, Won Suk;Jang, Sang-hyun;Shin, Yongtae
    • Journal of Information Technology Services
    • /
    • v.20 no.3
    • /
    • pp.41-56
    • /
    • 2021
  • New drug discovery and development research enable clinical treatment that saves human life and improves the quality of life, but the possibility of success with new drugs is significantly low despite a long time of 14 to 16 years and a large investment of 2 to 3 trillion won in traditional methods. As artificial intelligence is expected to radically change the new drug development paradigm, artificial intelligence new drug discovery and development projects are underway in various forms of collaboration, such as joint research between global pharmaceutical companies and IT companies, and government-private consortiums. This study uses the TOE framework and the Value-based Adoption Model, and the technical, organizational, and environmental factors that should be considered for the acceptance of AI technology at the level of the new drug research organization are the value of artificial intelligence technology. By analyzing the explanatory power of the relationship between perception and intention to use, it is intended to derive practical implications. Therefore, in this work, we present a research model in which technical, organizational, and environmental factors affecting the introduction of artificial intelligence technologies are mediated by strategic value recognition that takes into account all factors of benefit and sacrifice. Empirical analysis shows that usefulness, technicality, and innovativeness have significantly affected the perceived value of AI drug development systems, and that social influence and technology support infrastructure have significant impact on AI Drug Discovery and Development systems.

Analysis of Geological Factors for Risk Assessment in Deep Rock Excavation in South Korea (한국의 대심도 암반 굴착 위험도 산정을 위한 인자 분석)

  • Ihm, Myeong Hyeok;Lee, Hana
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.211-220
    • /
    • 2021
  • Tunnel collapse often occurs during deep underground tunneling (> 40 m depth) in South Korea. Natural cavities as well as water supply pipes, sewer pipes, electric power cables, artificial cavities created by subway construction are complexly distributed in the artificial ground in the shallow depths of the urban area. For deep tunnel excavation, it is necessary to understand the properties of the ground which is characterized by porous elements and various geological structures, and their influence on the stability of the ground. This study analyzed geological factors for risk assessment in deep excavation in South Korea based on domestic and overseas case study. As a result, a total of 7 categories and 38 factors were derived. Factors with high weights were fault and fault clay, differential stress, rock type, groundwater and mud inrush, uniaxial compressive strength, cross-sectional area of tunnel, overburden thickness, karst and valley terrain, fold, limestone alternation, fluctuation of groundwater table, tunnel depth, dyke, RQD, joint characteristics, anisotropy, rockburst and so forth.

Correlation Analysis Between Chemical Degradation Characteristics of Grease and Degradation Characteristics of Bearing Through Durability Test (내구시험을 통한 베어링의 열화 특성과 그리스의 화학적 열화 특성 연관성 분석)

  • Kang, Bo-Sik;Lee, Choong-Sung;Ryu, Kyung-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1239-1246
    • /
    • 2022
  • This paper introduces the effect of grease on the degradation characteristics of bearings used as key components of packaging equipment and automation systems. Bearings parts are installed to fix and support the rotating body of the system, and performance degradation of the bearings has a great effect on the life of the system too. When bearings are used in various devices and systems, the grease is applied to reduce friction and improve fatigue life. Determining the type of lubricant (grease) is important because it has a great influence on the operating environment and lifespan and ensures long lifespan of systems and facilities. However, studies that simultaneously compared and analyzed the change in mechanical degradation characteristics and the comparison of chemical degradation characteristics according to grease types under actual operating conditions are insufficient. In this paper, three types of small harmonic drive, high-load reducer, and low-load reducer grease used in power transmission joint modules are experimentally selected and finally injected into ball bearings with a load (19,500N) to improve bearing durability. Degradation characteristics were tested by attaching to test equipment. At this time, after the durability test under the same load conditions, the mechanical degradation characteristics, that is temperature, vibration according to the three greases types. In addition, the chemical degradation characteristics of the corresponding grease was compared to present the results of mutual correlation analysis.

ESTABLISHMENT OF CDM PROJECT ADDITIONALITY THROUGH ECONOMIC INDICATORS

  • Kai. Li.;Robert Tiong L. K.;Maria Balatbat ;David Carmichael
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.272-275
    • /
    • 2009
  • Carbon finance is the investment in Greenhouse Gas (GHG) emission reduction projects in developing countries and countries with economies in transition within the framework of the Kyoto Protocol's Clean Development Mechanism (CDM) or Joint Implementation (JI) and with creation of financial instruments, i.e., carbon credits, which are tradable in carbon market. The additional revenue generated from carbon credits will increase the bankability of projects by reducing the risks of commercial lending or grant finance. Meantime, it has also demonstrated numerous opportunities for collaborating across sectors, and has served as a catalyst in bringing climate issues to bear in projects relating to rural electrification, renewable energy, energy efficiency, urban infrastructure, waste management, pollution abatement, forestry, and water resource management. Establishing additionality is essential for successful CDM project development. One of the key steps is the investment analysis. As guided by UNFCCC, financial indicators such as IRR, NPV, DSCR etc are most commonly used in both Option II & Option III. However, economic indicator such as Economic Internal Rate of Return(EIRR) are often overlooked in Option III even it might be more suitable for the project. This could be due to the difficulties in economic analysis. Although Asian Development Bank(ADB) has given guidelines in evaluating EIRR, there are still large amount of works have to be carried out in estimating the economic, financial, social and environmental benefits in the host country. This paper will present a case study of a CDM development of a 18 MW hydro power plant with carbon finance option in central Vietnam. The estimation of respective factors in EIRR, such as Willingness to Pay(WTP), shadow price etc, will be addressed with the adjustment to Vietnam local provincial factors. The significance of carbon finance to Vietnam renewable energy development will also be addressed.

  • PDF

CONSTRUCTION MANAGEMENT OF TUNNELLING IN SEVERE GROUNDWATER CONDITION

  • Young Nam Lee;Dae Young Kim
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.655-661
    • /
    • 2005
  • For a hydro power plant project, the headrace tunnel having a finished diameter of 3.3m was constructed in volcanic rocks with well-developed vertical joint and high groundwater table. The intake facility was located 20.3 km upstream of the powerhouse and headrace tunnel of 20 km in length and penstock of 440 m in height connected the intake and the powerhouse. The typical caldera lake, Lake Toba set the geology at the site; the caving of the ground caused tension cracks in the vertical direction to be developed and initial stresses at the ground to be released. High groundwater table(the maximum head of 20 bar) in the area of well-connected vertical joints delayed the progress of tunnel excavation severely due to the excessive inflow of groundwater. The excavation of tunnel was made using open-shield type TBM and mucking cars on the rail. High volume of water inflow raised the water level inside tunnel to 70 cm, 17% of tunnel diameter (3.9 m) and hindered the mucking of spoil under water. To improve the productivity, several adjustments such as modification of TBM and mucking cars and increase in the number of submersible pumps were made for the excavation of severe water inflow zone. Since the ground condition encountered during excavation turned out to be much worse, it was decided to adopt PC segment lining instead of RC lining. Besides, depending on the conditions of the water inflow, rock mass condition and internal water pressure, one of the invert PC segment lining with in-situ RC lining, RC lining and steel lining was applied to meet the site specific condition. With the adoption of PC segment lining, modification of TBM and other improvement, the excavation of the tunnel under severe groundwater condition was successfully completed.

  • PDF

A study on the Improvement of Electromyography of Agricultural Work Chairs for the Prevention of Musculoskeletal Disorders

  • June Hwan Kim;Eun Suk Lee;Won Sik Choi
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.76-83
    • /
    • 2023
  • Squatting of agricultural work can cause musculoskeletal disorders due to excessive pressure and rotational force on the knee joint In order to improve the assistive chair used in squatting agricultural work so that it can be used in a narrow groove, it is intended to improve the musculoskeletal harm of squatting work by attaching a spring on the assistive chair. Therefore, in the presenty study, 3D drawing was done using ProEngineer (3D), and a mock-up was produced and tested. Using pro-Engineer, it was judged that it was rare for plastic to be broken by a spring, so the analysis was conducted with a focus on springs. It was found that the structure that can absorb the shock according to the rigidity of the tape spring and balance the body is that the power to withstand the load of the weight is distributed as a whole when five springs are used. Electromyography was measured using ME600 (Mega Electronics, Finland) Measuring equipment attached to the waist, thighs, calves, and shins. EMG values were measured and compared with the prototype in two ways, when the worker did not wear the product and when he wore an existing product on the market. As a result of the experiment when using the prototype, the maximum EMG value for each part is considered to be helpful in preventing musculoskeletal diseases as the amount of muscle used is reduced in the waist, thighs, calves, and shins.

Tritium Fuel Cycle of the International Thermonuclear Experimental Reactor (국제핵융합실험로 삼중수소 연료주기)

  • Song, Kyu-Min;Sohn, Soon Hwan;Chung, Hongsuk;Yun, Sei-Hun;Jung, Ki Jung
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.595-603
    • /
    • 2012
  • International Thermonuclear Experimental Reactor (ITER) will be constructed in 2019 according to the JIA (Joint Implementation Agreement) of 7 countries. The ITER fusion fuel cycle consists of fusion vacuum vessel, tritium plant and fuelling system. The tritium plant provides the functions of storage, delivery, separation, removal and recovery of the deuterium and tritium used as fusion fuels for the ITER. The tritium plant systems supply deuterium and tritium from external sources and treat all tritiated fluids from ITER operation through Storage and Delivery System (SDS), Tokamak Exhaust Processing (TEP), Isotope Separation System (ISS), Water Detritiation System & Atmosphere Detritiation System (WDS & ADS) and Analysis System (ANS). In this paper, the functions and design requirements of the major systems in the tritium plant and the status of R&D are described. Korean party is developing the SDS for ITER tritium plant and partially attaining the WDS technology through the construction and operation experience of the Wolsong Tritium Removal Facility (WTRF). Now it is expected that researchers in other fields such as chemical engineering take part in the development of upcoming technologies for ISS and TEP.