• Title/Summary/Keyword: joint panel

Search Result 198, Processing Time 0.033 seconds

Dymamic Behavior of Large Concrete Panel Structures Subjected Seismic Loads (지진하중을 받는 대형 콘크리트 판구조의 동적거동-3층 입체구조의 진동실험결과를 중심으로)

  • 서수연;박병순;백용준;이원호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.148-153
    • /
    • 1993
  • The paper presents the results of shaking table test conducted on the 1/3.3 scaled large concrete panel model. The behaviors of large concrete panel structures subjected to seismic excitations are controlled by capacity of horizontal and vertical joints. To Study the seismic capacity of the large concrete panel structures, experimental researches for joints and structural assemblage are needed. Especially, since the magnitude of seismic loads are depended on the variation of time, period and accelerations, dynamic test is needed for estimating the seismic resistance of large concrete panel structures. The objective of this paper is to study the behaviors of large concrete panel structures on seismic excitations and to estimate the safety. Test results are as follows : 1) Test model was critically damaged in the first floor horizontal joint by rocking. 2) Elastic limit(0.12kg) of test model was 5times higher than that of korean seismic design code. 3) Maxium base shear of test model at the ground acceleration of 0.12g was 3.5 times higher than the result of equivalent static analysis. 4) Damping ratio of test model turned out 3.9~5.3% and the period at 0.12g was 0.065sec.

  • PDF

Seismic detailing of reinforced concrete beam-column connections

  • Kim, Jang Hoon;Mander, John B.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.589-601
    • /
    • 2000
  • A simplified analysis procedure utilizing the strut-tie modeling technique is developed to take a close look into the post-elastic deformation capacity of beam-column connections in ductile reinforced concrete frame structures. Particular emphasis is given to the effect of concrete strength decay and quantity and arrangement of joint shear steel. For this a fan-shaped crack pattern is postulated through the joints. A series of hypothetical rigid nodes are assumed through which struts, ties and boundaries are connected to each other. The equilibrium consideration enables all forces in struts, ties and boundaries to be related through the nodes. The boundary condition surrounding the joints is obtained by the mechanism analysis of the frame structures. In order to avoid a complexity from the indeterminacy of the truss model, it is assumed that all shear steel yielded. It is noted from the previous research that the capacity of struts is limited by the principal tensile strain of the joint panel for which the strain of the transverse diagonal is taken. The post-yield deformation of joint steel is taken to be the only source of the joint shear deformation beyond the elastic range. Both deformations are related by the energy consideration. The analysis is then performed by iteration for a given shear strain. The analysis results indicate that concentrating most of the joint steel near the center of the joint along with higher strength concrete may enhance the post-elastic joint performance.

A Study on the Evaluation of Mechanical Characteristics for Tailor Welded Blank Panel (TWB 판넬의 기계적특성 평가에 관한 연구)

  • Chun, Chang-Hwan;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.4
    • /
    • pp.183-190
    • /
    • 2010
  • There are many methods to reduce the weight and the cost of the automobile body, among them, Tailor Welded Blank (TWB) is new welding method applied to body structure. It is necessary to evaluate mechanical properties of TWB structures or sheets for the application to automobile body parts. In this study, the stiffness of T-type and L-type joint structures, composite of TWB panel, which simplified two portions of side structure in automobile body were investigated. Additionally, the fatigue properties of TWB panels were obtained. Two types of welding technologies, laser and mash seam welding, were used to join mild panels with different thickness. This results are compared with conventional structures. The results are as follows: 1) The stiffness of joint structures, composite of TWB panel, is approximately 17% higher than that of conventional ones. 2) The location of welding line in TWB had a effect on the in plane bending stiffness, but not on the out of plane bending stiffness. 3) In terms of welding technology type, the mash seam welding show higher stiffness than the laser welding for in plane bending stiffness. But minimal differences in both types are revealed for out of plane bending stiffness. 4) The fatigue strength, composite of TWB panel, is lower than that of base steel. It is thought that defects in the welding zone had the action of notch in the fatigue test.

Comparison of Seismic Performance of Steel Moment Frame according to Different Analytic Joint Models (국내 철골골조의 접합부모델에 따른 내진성능 비교)

  • 이준석;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.317-323
    • /
    • 2000
  • The purpose of this study is to compare the seismic resistant capacity inherent in ductile moment resisting frames using two different joint modeling. The difference between these two models is the capability for considering the panel zone deformation. For this purpose, 5 story steel moment frame is designed in compliance to the Korean seismic design provisions and the steel structure design standard. Nonlinear Static Procedure(NSP) and Nonlinear Dynamic Procedure(NDP) of this structure are carried out using two different joint models. Based on the results of NSP and NDP, the sensitivity of the response to analytical modeling is appraised. Also, it is proposed that for the highrise steel structures, the joint deformation should be accounted properly by the analytical model.

  • PDF

Behavior of Composite RCS Beam-Column Joint Subjected to Cyclic Loading (반복하중을 받는 철근콘크리트 기둥과 철골보 합성구조의 접합부 성능에 관한 연구)

  • Cho, Pil-Kyu;Kim, Sang-Jun;Her, Jun;Choi, Oan-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.577-581
    • /
    • 1998
  • Recent trends in the construction of building frame feature the increase use of composite steel concrete members functioning together in what terms of mixed structural systems. One of such systems, RCS(reinforced concrete column and steel beam) system, is known to make use of type of member in the most efficient manner to maximize the structural and economic benifits. Based on the results, joint behavior and design were described in terms of two primary modes of failure ; joint panel shear and vertical bearing. In test specimen, joint deformation is observed at internal region greater than at external region.

  • PDF

A Study on Early Strength Estimation of Precast Concrete joint Mortar with Microwave (마이크로파에 의한 PC접합모르타르의 조기강도추정에 관한 연구)

  • 원준연;박일용;백민수;이종균;안형준;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.217-222
    • /
    • 2000
  • A large Pc structure building is system that consisted of bearing wall and slab joint. It has general structure stability from unity thar each members tied at joint. The strength of mortar that packing in joint among panels is important to internal force in entire building system. Do, if we could get early strength estimation with microwave. It would bring good construction planning, reduce construction time, and judge building stability and so on. The purpose of this study is to develop early estimation method for making better quality control and constructing good PC panel structure. The results of this study were as follows :1) With sealed molds, reduced moisture volatilization to more than 60% and enlarged 30% accelerated compressive strength than before one. 2) To get more accelerated strength, we should control maximum temperature difference to $30^{\circ}C$ downward 3)Interrelation with 7-day and 28-day strength were 0.831,0.902, and it is above than before one

  • PDF

Experimental research on seismic behavior of novel composite RCS joints

  • Men, Jinjie;Guo, Zhifeng;Shi, Qingxuan
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.209-221
    • /
    • 2015
  • Results from an experimental study on the seismic response of six composite reinforced concrete column-to-steel beam interior joints are presented. The primary variable investigated is the details in the joint. For the basic specimen, the main subassemblies of the beam and column are both continuous, and the steel beam flanges extended to the joint are partly cut off. Transverse beam, steel band plates, cove plates, X shape reinforcement bars and end plates are used in the other five specimens, respectively. After the joint steel panel yielded, two failure modes were observed during the test: local failure in Specimens 1, 2 and 4, shear failure in Specimens 3, 5 and 6. Specimens 6, 3, 5 and 4 have a better strength and deformation capacity than the other two specimens for the effectiveness of their subassemblies. For Specimens 2 and 4, though the performance of strength degradation and stiffness degradation are not as good as the other four specimens, they all have excellent energy dissipation capacity comparing to the RC joint, or the Steel Reinforced Concrete (SRC) joint. Based on the test result, some suggestions are presented for the design of composite RCS joint.

A Study to select the optimum size for the panel of the precast slab track system (프리캐스트 슬래브궤도 패널의 최적규격 선정을 위한 연구)

  • Kim, Yoo-Bong;Moon, Do-Young;Beak, In-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.740-744
    • /
    • 2011
  • Precast slab track system(PSTS) is a concrete track laying system where the slab panels are pre-manufactured in factories and assembled and installed on-site. PSTS has been developed for the past 30 years in countries where railway technologies are advanced such as Japan and Germany to improve the various drawbacks of the in-situ concrete slab track. However, the usefulness of PSTS is being continuously approved by many other countries such as China, Taiwan, Austria, Italy, Spain, etc,. Lately, not only Japan and Germany, but also Austria, Italy and China have developed their own PSTS by collaboration between their Governments and private enterprises and are now attempting to expand their businesse soverseas. In accordance to such movement, in 2006, the Korean Railroad Research Institution and Sampyo E&C have developed a Korean PSTS by joint research. PSTS consists of concrete panel, under pouring layer and concrete base layer. Amongst these components, the panel is the main component of PSTS which supports the train load and has a great effect on the track quality, workability and economics. Therefore, a study is to be conducted to select the optimum size for the Panel of the precast slab track system panel by analyzing the various standards & forms, interpretation of finite elements of the selected model and economical analysis.

  • PDF

Evaluation of Pull-Out Strength of Connections with Roof Cladding using Honey Comb Panel Secured Cool Roof Performance (Cool Roof 성능을 확보한 Honey Comb Panel 지붕 접합부의 인발 성능 평가)

  • Lee, In Ho;Park, Sang Woo;Ko, Kwang Il;Chung, Mi Ja;Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.3
    • /
    • pp.139-149
    • /
    • 2016
  • Roof cladding of buildings are required for the measures about the 'screw pull-out' which causes the casualties and the property damage by typhoons. In this study, the pull-out resistance was increased by increasing the penetration depth of the screw installing a ironware called 'insert nut' on the roof cladding frame. Tensile tests were conducted to compare the pull-out strengths of a general screw-joint and a nut insert joint. Roof cladding that is actually being used in the field was produced using the 'solid work' and then the roof claddings using a general screw-joint and a nut insert joint were compared by a static test and dynamic test.

Theoretical Models for Predicting Racking Resistance of Shear Walls (전단벽의 전단성능 예측 모형)

  • Jang, Sang Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.96-105
    • /
    • 2002
  • Shear wall is the most important component resisting lateral loads imposed to a building by wind or earthquake. In shear walls, lateral load applied to framing is transmitted to sheathing panel through nailed joints between sheathing and framing so that the load is resisted by in-plane shear strength of sheathing. Therefore, nailed joints are the most basic and important component in the viewpoint of stiffness and strength of shear walls. In this study, stiffness and strength of single nailed joint were measured by single shear tests of nailed joints and used as input for theoretical models developed to estimate racking behavior of shear walls. And shear walls were tested to check the accuracy of theoretical models estimating racking resistance of shear walls. Stiffness of nailed joint was affected by grain direction of stud but direction of sheathing panel had little effect. Behavior of nailed joint and shear walls under lateral loads could be represented by three lines. Theoretical model II was more accurate than theoretical model I in estimating racking behavior of shear wall under loads.