• Title/Summary/Keyword: joint motion

Search Result 2,172, Processing Time 0.03 seconds

Mid-term Clinical and Radiological Outcomes of Latissimus Dorsi Tendon Transfer in Massive Rotator Cuff Tears

  • Suh, Dongwhan;Ji, Jong-Hun;Tankshali, Kirtan;Kim, Eung-Sic
    • Clinics in Shoulder and Elbow
    • /
    • v.22 no.4
    • /
    • pp.220-226
    • /
    • 2019
  • Background: This retrospective study was undertaken to evaluate mid-term clinical and radiological outcomes of lattisimus dorsi (LD) tendon transfer in patients with irreparable massive rotator cuff tears (MRCT). We hypothesize that LD tendon transfer would provide safe and satisfactory clinical outcomes at mid-term follow-up. Methods: From November 2008 to December 2016, 23 patients ($57.5{\pm}4.4years$; 20 male, 3 female) who underwent LD tendon transfer for massive tears, were enrolled. Inclusion criteria were irreparable MRCT. Exclusion criteria included full thickness subscapularis tear, rotator cuff arthropathy, anterosuperior rotator cuff tear, and osteoarthritis. Mean follow-up period was $4.7{\pm}4.0years$ (range, 2-12 years). Clinical assessment (American Shoulder and Elbow Surgeons [ASES], University of California, Los Angeles [UCLA], Simple Shoulder Test [SST]) and radiographic assessment (osteoarthritis [OA], acromiohumeral distance [AHI]) were evaluated. Results: ASES, UCLA and SST scores, and range of motion (ROM), except internal rotation, improved significantly at the last followup (p<0.05). Also, AHI was significantly improved at the last follow-up, from 6.6 mm to 8.2 mm (p=0.008). At the final follow-up, the radiologic stages of the glenohumeral osteoarthritis were determined as stage 1 in 9 patients, stage 2 in 10 patients, stage 3 in 2 patients, and stage 4 in 2 patients. Complications were observed in 21.7% cases: 3 re-tears and 2 infections were noted in our study. Conclusions: LD tendon transfer for irreparable MRCT provides satisfactory clinical outcomes at mid-term follow-up. Mild degenerative osteoarthritis (stage 1, 2) of the shoulder joint are common at the mid-term follow-up. Also, complications such as tear, infection should be considered.

Response Analysis of MW-Class Floating Offshore Wind Power System using International Standard IEC61400-3-2

  • Yu, Youngjae;Shin, Hyunkyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.454-460
    • /
    • 2020
  • In 2019, the Korean government announced the 3rd Basic Plan for Energy, which included expanding the rate of renewable energy generation by 30-40% by 2040. Hence, offshore wind power generation, which is relatively easy to construct in large areas, should be considered. The East Sea coast of Korea is a sea area where the depth reaches 50 m, which is deeper than the west coast, even though it is only 2.5 km away from the coastline. Therefore, for offshore wind power projects on the East Sea coast, a floating offshore wind power should be considered instead of a fixed one. In this study, a response analysis was performed by applying the analytical conditions of IEC61400-3-2 for the design of floating offshore wind power generation systems. In the newly revised IEC61400-3-2 international standard, design load cases to be considered in floating offshore wind power systems are specified. The upper structure applied to the numerical analysis was a 5-MW-class wind generator developed by the National Renewable Energy Laboratory (NREL), and the marine environment conditions required for the analysis were based on the Ulsan Meteorological Buoy data from the Korea Meteorological Administration. The FAST v8 developed by NREL was used in the coupled analysis. From the simulation, the maximum response of the six degrees-of-freedom motion and the maximum load response of the joint part were compared. Additionally, redundancy was verified under abnormal conditions. The results indicate that the platform has a maximum displacement radius of approximately 40 m under an extreme sea state, and when one mooring line is broken, this distance increased to approximately 565 m. In conclusion, redundancy should be verified to determine the design of floating offshore wind farms or the arrangement of mooring systems.

A Study on Dynamic Analysis Model and Stability of Stone Cultural Properties of Inverted Pendulum Type with 5 Joints (5개의 연결부를 가지는 역진자형 석조문화재의 동적 해석모델 및 안정성 연구)

  • Choi, Jae-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.21-30
    • /
    • 2021
  • Architectural cultural properties suffer a lot of damage due to various environmental factors. In order to preserve damaged cultural properties, preventive preservation and long-term preservation management are becoming more important. Therefore, research on a scientific non-destructive testing method applicable to regular inspection is required. For related research, DangGan with a high flag-pole shape was selected as the subject of study among various cultural properties. Among the preserved DangGans, a basic study was conducted on the analysis technique to evaluate the structural stability by selecting Treasure No. 49 Naju SeokDangGan. An idealized model was presented and a multi-degree of freedom equation of motion was derived. In addition, an equation for estimating the critical stiffness value for each joint position is presented.

Effect of High-frequency Diathermy on Hamstring Tightness

  • Kim, Ye Jin;Park, Joo-Hee;Kim, Ji-hyun;Moon, Gyeong Ah;Jeon, Hye-Seon
    • Physical Therapy Korea
    • /
    • v.28 no.1
    • /
    • pp.65-71
    • /
    • 2021
  • Background: The hamstring is a muscle that crosses two joints, that is the hip and knee, and its flexibility is an important indicator of physical health in its role in many activities of daily living such as sitting, walking, and running. Limited range of motion (ROM) due to hamstring tightness is strongly related to back pain and malfunction of the hip joint. High-frequency diathermy (HFD) therapy is known to be effective in relaxing the muscle and increasing ROM. Objects: To investigate the effects of HFD on active knee extension ROM and hamstring tone and stiffness in participants with hamstring tightness. Methods: Twenty-four participants with hamstring tightness were recruited, and the operational definition of hamstring tightness in this study was active knee extension ROM of below 160° at 90° hip flexion in the supine position. HFD was applied to the hamstring for 15 minutes using the WINBACK device. All participants were examined before and after the intervention, and the results were analyzed using a paired t-test. The outcome measures included knee extension ROM, the viscoelastic property of the hamstring, and peak torque for passive knee extension. Results: The active knee extension ROM significantly increased from 138.8° ± 9.9° (mean ± standard deviation) to 143.9° ± 10.4° after the intervention (p < 0.05), while viscoelastic property of the hamstring significantly decreased (p < 0.05). Also, the peak torque for knee extension significantly decreased (p < 0.05). Conclusion: Application of HFD for 15 minutes to tight hamstrings immediately improves the active ROM and reduces the tone, stiffness, and elasticity of the muscle. However, further experiments are required to examine the long-term effects of HFD on hamstring tightness including pain reduction, postural improvement around the pelvis and lower extremities, and enhanced functional movement.

A Study of 100 tonf Tensile Load for SMART Mooring Line Monitoring System Considering Polymer Fiber Creep Characteristics

  • Chung, Joseph Chul;Lee, Michael Myung-Sub;Kang, Sung Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.266-272
    • /
    • 2021
  • Mooring systems are among the most important elements employed to control the motion of floating offshore structures on the sea. Considering the use of polymer material, a new method is proposed to address the creep characteristics rather than the method of using a tension load cell for measuring the tension of the mooring line. This study uses a synthetic mooring rope made from a polymer material, which usually consists of three parts: center, eye, and splice, and which makes a joint for two successive ropes. We integrate the optical sensor into the synthetic mooring ropes to measure the rope tension. The different structure of the mooring line in the longitudinal direction can be used to measure the loads with the entire mooring configuration in series, which can be defined as SMART (Smart Mooring and Riser Truncation) mooring. To determine the characteristics of the basic SMART mooring, a SMART mooring with a diameter of 3 mm made of three different polymer materials is observed to change the wavelength that responds as the length changes. By performing the longitudinal tension experiment using three different SMART moorings, it was confirmed that there were linear wavelength changes in the response characteristics of the 3-mm-diameter SMART moorings. A 54-mm-diameter SMART mooring is produced to measure the response of longitudinal tension on the center, eye, and splice of the mooring, and a longitudinal tension of 100 t in step-by-step applied for the Maintained Test and Fatigue Cycle Test is conducted. By performing a longitudinal tension experiment, wavelength changes were detected in the center, eye, and splice position of the SMART moorings. The results obtained from each part of the installed sensors indicated a different strain measurement depending on the position of the SMART moorings. The variation of the strain measurement with the position was more than twice the result of the difference measurement, while the applied external load increased step-by-step. It appears that there is a correlation with an externally generated longitudinal tensional force depending on the cross-sectional area of each part of the SMART mooring.

Effect of Surface Environment on Front Squat of Crossfit Athletes (지면환경이 크로스핏 선수의 프론트 스쿼트에 미치는 영향)

  • Jang, Yootae;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.2
    • /
    • pp.49-55
    • /
    • 2022
  • Objective: This study aims to verify the front squat motions using by two different surfaces, thereby elucidating the grounds for effective training environment that can minimize the risk of injury. Method: Total of 10 healthy male crossfit athletes were recruited for this study (age: 32.30 ± 3.05 yrs., height: 173.70 ± 5.12 cm, body mass: 82.40 ± 6.31 kg, 1RM: 160 ± 13.80 kg). All participants are those who know how to do front squats well with more than five years of crossfit athlete experience. All participants have sufficient experience in front squats on two types of surface which are soft surface (SS) and hard surface (HS). In each surface, participant perform 10reps of the front squat with 80% of the pre-measured 1RM. A 3-dimensional motion analysis with 8 infrared cameras and 2 channels of EMG was performed in this study. Paired sample t-test was used for statistical verification between two surfaces. The significant level was set at α=.05. Results: The significantly decreased rectus femoris muscle activation was found in SS compared with that of HS on phase 1 (p<.05). Also, ROM of ankle joint was significantly increased in the SS compare with that of HS on phase 1 (p<.05). The muscle activity ratio of gluteus maximus/rectus femoris showed a significant difference only in SS compared with that of HS on phase 1 (p<.05). Conclusion: In conclusion, Korean crossfit boxes should consider the use of hard surface, which has a relatively less risk of injury than soft surface, in selecting flooring materials. For the Crossfit athletes, they are also considered appropriate to train on a relatively hard surface.

Korean Medical Treatment for Partial Rupture of Gastrocnemius Muscle Observed by Ultrasonography: A Case report (초음파를 통해 경과관찰한 비복근 부분파열 환자의 한의학적 치료: 증례보고)

  • Youn, Young Hoon;Kim, Hye Min;Kim, Jae Su;Lee, Hyun Jong;Lim, Sung Chul;Lee, Yun Kyu
    • Korean Journal of Acupuncture
    • /
    • v.39 no.3
    • /
    • pp.107-113
    • /
    • 2022
  • Gastrocnemius muscle partial rupture is a common muscle injury. This case is report on a patient with a gastrocnemius muscle partial rupture who was continuously observed with ultrasonography while receiving Korean medicine treatment. Acupuncture, pharmacoacupuncture, herbal medicine, physical therapy and rehabilitation treatment were performed on a patient diagnosed with gastrocnemius partial rupture. The improvement of symptoms was evaluated using Numeric Rating Scale (NRS), Range of Motion (ROM) of ankle, circumference of calf and size of hematoma by using ultrasonography. NRS decreased more than 90%, ROM of ankle joint gradually improved, calf circumference improved, and hematoma reduced by more than 90% when measured by ultrasonography. In this study, gastrocnemius muscle partial rupture was observed with ultrasonography, and it is considered that the Korean medical treatment is useful for gastrocnemius muscle partial rupture.

Applying Focused and Radial Shock Wave for Calcific Tendinitis of the Shoulder : Randomized Controlled Study

  • Kim, Jonggun;Oh, Changmin;Yoo, John;Yim, Jongeun
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.3
    • /
    • pp.356-362
    • /
    • 2022
  • Objective: Extracorporeal shock wave therapy (ESWT) is a nonsurgical treatment alternative to surgery for various musculoskeletal diseases that have traditionally been difficult to treat conservatively, including calcific tendinitis, tennis elbow, and plantar fasciitis. This study evaluated the effect of focused and radial shock wave therapy for calcific tendinitis of the shoulder. Design: Randomized controlled study Methods: Forty participants with calcific tendinitis were randomized into focused shock wave therapy (FSWT, n=20) and radial shock wave therapy (RSWT, n=20) groups. Patients were examined before and one week after treatment. Pain intensity was subjectively assessed using the visual analogue scale and function was assessed using the Constant-Murley score (CMS) and range of motion (ROM). Results: The results showed a significant decrease in pain and significant increase in shoulder mobility and function in both groups. However, FSWT was significantly more effective than RSWT, based on CMS and ROM assessment. Conclusions: Although it is possible to raise the energy intensity of RSWT to increase the depth at which the energy becomes dispersed, higher energy intensity is associated with a greater risk of severe neurovascular damage, and that high-intensity stimulation can cause adverse effects such as pain and petechiae. Therefore, FSWT is considered to be a safe and effective method for treating tendinous lesions while minimizing adverse effects. In conclusion, both FSWT and RSWT can reduce pain and increase mobility and function. FSWT can be considered as an alternative for calcific tendinitis of the shoulder.

The Effects of Physical Therapy Intervention with Local Vibration on Physical Function in Patients with Traumatic Patella Fracture: Case Series (외상으로 인한 슬개골 골절을 가진 환자의 국소진동을 동반한 물리치료 중재가 신체기능에 미치는 영향: 사례군 연구)

  • Seung-won, Ahn
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.28 no.3
    • /
    • pp.89-99
    • /
    • 2022
  • Background: The purpose of this study was to investigate the effects of physical therapy intervention with local vibration on the physical function of patients with traumatic patella fractures. Methods: This study recruited 6 subjects who had suffered traumatic patella fractures. The study was conducted for an average of 12.8 weeks. Before the treatment (2 weeks post-surgery), they were evaluated using the numeric pain rating scale (NPRS), the Korean-version of the impact of event scale-revised (IES-R-K), pressure pain threshold (PPT), range of motion (ROM) of the knee joint, and the Korean knee injury and osteoarthritis outcome score (K-KOOS) and were reevaluated after 7 and 12 weeks, post-surgery. This study was conducted according to ORIF Patella Fracture Post-Operative Rehabilitation Protocol after applying local vibration. The protocol consists of Phases 1~5 and this study has been applied from phase 2. Results: A comparison of the performance of the participants before and after the intervention showed a decrease in NPRS (9.83±.41→4.83±.98), IES-R-K (68.67±2.73→23.83±2.40), and K-KOOS (Function, Daily living: 70.5±5.96→34.0±3.35, Function, Sports and Recreational activities: 22.83±2.32→10.77±1.37, Quality of Life: 19.33±7.33→7.33±.52) scores. And the ROM (Knee flexion: 30.0±4.47°→128.73±3.6°, Knee extension: -6.83±2.48°→-1.33±1.03°) and PPT (9.67±.52kg/cm2→22.44±2.33kg/cm2) scores increased. Conclusion: These results show that physical intervention with local vibration using a Blackroll® booster and head can help to improve pain, physical function, and psychological status. Also, it was possible to select interventions depending on the patient's condition and the desired goal, using physical intervention with the Blackroll® booster technique.

Development of Static Seal for a Liquid Rocket Engine (액체 로켓 엔진 스태틱 실 개발)

  • Jeon, Seong Min;Yoon, Suk-Hwan;Chung, Taegeum
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.53-59
    • /
    • 2022
  • Static seals are used to seal high temperature gas and cryogenic fluid under high pressure, at interfaces between liquid rocket engine components such as combustion chamber, turbopump, gas generator, valves, etc. As thermal expansion and contraction at assembly interfaces cause undesirable leakage under cryogenic and high temperature environments, static seals applied for sealing of joint interfaces without relative motion should be designed properly. The additional function of rotation at the sealing face is also required for static seals, when the spherical flange is used for improvement of assembly at misalignment interfaces. In this study, structural analysis and leak tightness test of simulating test rig for several important interfaces are performed, to verify structural integrity of static seals.