• 제목/요약/키워드: joint measurement

검색결과 797건 처리시간 0.027초

발목관절 복합체의 가동범위 측정을 위한 중립위치와 측정방법의 신뢰도 (Reliability of the Joint Neutral Position and Measurement Methods of the Ankle Joint Complex Range of Motion)

  • 홍완성;김기원
    • The Journal of Korean Physical Therapy
    • /
    • 제23권4호
    • /
    • pp.45-51
    • /
    • 2011
  • Purpose: To determine the correct measurement methods of the ankle joint complex range of motion for measuring the neutral position and evaluate the rater reliability. In addition, the impact of training on the rater reliability was also assessed. Methods: The subjects were eleven healthy women, who were evaluated by two physical therapists and one physical therapist recorded the results of the study. Standard goniometer was used as the measurement tool. The ankle and subtalar joint neutral position and the active range of motion of the ankle and subtalar joint were measured. Intra-rater reliability and inter-rater reliability measures were analyzed with intraclass correlation coefficients. Results: Intra-rater reliability and inter-rater reliability ranged from high to medium for the neutral position of the ankle joint complex. Intra-rater reliability for dorsiflexion and plantarflexion measurements was medium, while the inter-rater reliability was high. The range of motion of the subtalar joint was measured, and the intra-rater reliability and inter-rater reliability were low and medium, respectively Also, the intra-rater reliability was increased with formal training of the measurement techniques. Intra-rater reliability was reduced in case the raters had not undertaken the training. Conclusion: In summary, the results obtained with the measurement tools and joint measurement of position, indicate the consistency of repeated measurements made by the same observers. Under the same circumstances along with repetition of the same measurement technique during training caused an increase in the rater reliability of formally trained raters.

3차원 영상처리를 이용한 암반 사면의 절리 측정에 관한 연구 (Measurement of Rock Slope Joint using 3D Image Processing)

  • 이승호;황영철;심석래;정태영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.854-861
    • /
    • 2005
  • Studied accuracy and practical use possibility of joint measurement that using 3D laser scanner to rock slope. Measured joint of Rock slope and comparison applied 3 dimension laser scanner and clinometer. 3D laser scanning system preserves on computer calculating to 3 dimension coordinate scaning laser to object. and according to laser measurement method of interior, produce correct vector value from charge-coupled device(CCD) or laser reciver and telegram register and time measuring equipment. Create of object x, y, z point coordinates to 3 dimension space of computer. Such 3 dimension point datum (Point Clouds) forms relocate position informations that exist to practical space to computer space. Practical numerical values related between each other. Compared joint distribution and direction that measured by laser scanner and clinometer. By the result, Distribution of joint projected almost equally. Could get more joint datas by measurement of 3 dimension scanner than measured by clinometer. Therefore, There is effect that objectification of rock slope investigation data, shortening of investigation periods, investigation reduction of cost. could know that it is very effective method in joint measuring.

  • PDF

무인항공기를 이용한 절리사면의 안정성평가 계측장비 개발 (Measurement Equipment Development of Stability Evaluation for Joint Slope using Unmaned Aerial Vehicle)

  • 이현철;권기문;문창은;조영훈
    • 터널과지하공간
    • /
    • 제28권3호
    • /
    • pp.193-208
    • /
    • 2018
  • 암반사면을 안전하고 효과적으로 해석하기 위해서 암반의 역학적 특성을 면밀하게 조사해야 한다. 하지만 클리노미터를 사용한 절리조사의 한계점으로 인해 이를 보완한 새로운 측정법의 연구가 필요하다. 본 연구에서는 절리방향의 특성을 분석하기 위해 절리의 방향성을 현장에 적용할 수 있는 절리조사 측정장비를 개발하였다. 개발된 측정장비는 해석 소프트웨어와 하드웨어로 구분된다. 하드웨어는 암반 절리 방향성을 측정하는 측정모듈, 측정자료를 전송하는 전송모듈로 구성되었다. 소프트웨어는 측정모듈을 통해 얻은 데이터로부터 절리의 방향성을 분석하기 위해 개발하였으며 Drone Joint Orientation Survey Measurement로 명명하였다. 개발된 측정장비는 접근이 어려운 지역 등 조사자가 측정할 수 없는 경우에 현장적용성이 양호하며 절리의 방향성에 대한 실내시험결과를 효과적으로 분석할 수 있었다.

Development of wearable Range of Motion measurement device capable of dynamic measurement

  • Song, Seo Won;Lee, Minho;Kang, Min Soo
    • International journal of advanced smart convergence
    • /
    • 제8권4호
    • /
    • pp.154-160
    • /
    • 2019
  • In this paper, we propose the miniaturization size of wearable Range of Motion(ROM) and a system that can be connected with smart devices in real-time to measure the joint movement range dynamically. Currently, the ROM of the joint is directly measured by a person using a goniometer. Conventional methods are different depending on the measurement method and location of the measurement person, which makes it difficult to measure consistently and may cause errors. Also, it is impossible to measure the ROM of joints in real-life situations. Therefore, the wearable sensor is attached to the joint to be measured to develop a miniaturize size ROM device that can measure the range of motion of the joint in real-time. The sensor measured the resistance value changed according to the movement of the joint using a load cell. Also, the sensed analog values were converted to digital values using an Analog to Digital Converter(ADC). The converted amount can be transmitted wireless to the smart device through the wearable sensor node. As a result, the developed device can be measured more consistently than the measurement using the goniometer, communication with IoT-based smart devices, and wearable enables dynamic observation. The developed wearable sensor node will be able to monitor the dynamic state of rehabilitation patients in real-time and improve the rapid change of treatment method and customized treatment.

$Si_3N_4/SUS304$ 접합재의 잔류응력 및 강도평가 (Evaluation of Strength and Residual Stress in $Si_3N_4/SUS304$ Joint)

  • 박영철;오세욱;조용배
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.101-112
    • /
    • 1994
  • The measurement of residual stress distribution of $Si_3N_4/SUS304$ joint was performed on 23 specimens with the same joint condition using PSPC type X-ray stress measurement system and the two-dimensional elastoplastic analysis using finite element method was also attempted. As results, residual stress distribution near the interface on the ceramic side of the joint was revealed quantitatively. Residual stress on the ceramic side of the joint was turned out to be tensional near the interface, maximum along the edge, varying in accordance with the condition of the joint and variance to be most conspicuous for the residual stress normal to the interface characterized by the stress singularities. In the vicinity of the interface, the high stress concentration occurs and residual stress distributes three-dimensionally. Therefore, the measured stress distribution differed remarkably from the result of the two-dimensional finite-element analysis. Especially at the center of the specimen near the interface, the residual stress, $\sigma_{x}$ obtained from the finite element analysis was compressive, whereas measurement using X-ray yielded tensile $\sigma_{x}$. Here we discuss two dimensional superposition model the discrepancy between the results from the two dimensional finite element analysis and X-ray measurement.

Validity and Reliability of an Inertial Measurement Unit-Based 3D Angular Measurement of Shoulder Joint Motion

  • Yoon, Tae-Lim
    • The Journal of Korean Physical Therapy
    • /
    • 제29권3호
    • /
    • pp.145-151
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the validity and reliability of the measurement of shoulder joint motions using an inertial measurement unit (IMU). Methods: For this study, 33 participants (32 females and 1 male) were recruited. The subjects were passively positioned with the shoulder placed at specific angles using a goniometer (shoulder flexion $0^{\circ}-170^{\circ}$, abduction $0^{\circ}-170^{\circ}$, external rotation $0^{\circ}-90^{\circ}$, and internal rotation $0^{\circ}-60^{\circ}$ angles). Kinematic data on the shoulder joints were simultaneously obtained using IMU three-dimensional (3D) angular measurement (MyoMotion) and photographic measurement. Test-retest reliability and concurrent validity were examined. Results: The MyoMotion system provided good to very good relative reliability with small standard error of measurement (SEM) and minimal detectable change (MDC) values from all three planes. It also presented acceptable validity, except for some of shoulder flexion, shoulder external rotation, and shoulder abduction. There was a trend for the shoulder joint measurements to be underestimated using the IMU 3D angular measurement system compared to the goniometer and photo methods in all planes. Conclusion: The IMU 3D angular measurement provided a reliable measurement and presented acceptable validity. However, it showed relatively low accuracy in some shoulder positions. Therefore, using the MyoMotion measurement system to assess shoulder joint angles would be recommended only with careful consideration and supervision in all situations.

FES보행중의 피드백제어를 위한 관절 각도계측 시스템 개발 (Development of Joint Angle Measurement System for the Feedback Control in FES Locomotion)

  • 문기욱;김철승;김지원;이재호;권유리;강동원;강곤;김요한;엄광문
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.203-209
    • /
    • 2009
  • The purpose of this study is to develop a minimally constraint joint angle measurement system for the feedback control of FES (functional electrical stimulation) locomotion. Feedback control is desirable for the efficient FES locomotion, however, the simple on-off control schemes are mainly used in clinic because the currently available angle measurement systems are heavily constraint or cosmetically poor. We designed a new angle measurement system consisting of a magnet and magnetic sensors located below and above the ankle joint, respectively, in the rear side of ipsilateral leg. Two magnetic sensors are arranged so that the sensing axes are perpendicular each other. Multiple positions of sensors attachment on the shank part of the ankle joint model and also human ankle joint were selected and the accuracy of the measured angle at each position was investigated. The reference ankle joint angle was measured by potentiometer and motion capture system. The ankle joint angle was determined from the fitting curve of the reference angle and magnetic flux density relationship. The errors of the measured angle were calculated at each sensor position for the ankle range of motion (ROM) $-20{\sim}15$ degrees (dorsiflexion as positive) which covers the ankle ROM of both stroke patients and normal subjects during locomotion. The error was the smallest with the sensor at the position 1 which was the nearest position to the ankle joint. In case of human experiment, the RMS (root mean square) errors were $0.51{\pm}1.78(0.31{\sim}0.64)$ degrees and the maximum errors were $1.19{\pm}0.46(0.68{\sim}1.58)$ degrees. The proposed system is less constraint and cosmetically better than the existing angle measurement system because the wires are not needed.

등속조인트 Ball Groove 측정시스템 개발에 관한 연구 (Development of CV Joint Outer Race Ball Groove Measurement System)

  • 박광수;김봉준;장정환;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.160-163
    • /
    • 2005
  • The cute. race of CV(constant velocity) Joint is an important load-supporting automotive part, which transmits torque between the transmission gear box and driving wheel. The outer race is difficult to forge because its shape is very complicated and the required dimensional tolerances are very small. The forged CV Joint investigated in this study has six inner ball grooves requiring high operational accuracy. Therefore, the precise measurement of forged CV Joint is very important to guarantee the sound operation without noise and abnormal wear. In this study, unique in-situ measuring system designed specifically to measure the dimensional accuracy of six inner ball grooves of CV joint has been developed and implemented in shop environments. Newly developed system shows high measurement accuracy with simple operational sequence.

  • PDF

근골격계 부하 평가를 위한 2차원 자세 측정 시스템 개발 (Development of a 2D Posture Measurement System to Evaluate Musculoskeletal Workload)

  • 박성준;박재규;최재호
    • 대한인간공학회지
    • /
    • 제24권3호
    • /
    • pp.43-52
    • /
    • 2005
  • A two-dimensional posture measurement system was developed to evaluate the risks of work-related musculoskeletal disorders(MSDs) easily on various conditions of work. The posture measurement system is an essential tool to analyze the workload for preventing work-related musculoskeletal disorders. Although several posture measurement systems have been developed for workload assessment, some restrictions in industry still exist because of its difficulty on measuring work postures. In this study, an image recognition algorithm was developed based on a neural network method to measure work posture. Each joint angle of human body was automatically measured from the recognized images through the algorithm, and the measurement system makes it possible to evaluate the risks of work-related musculoskeletal disorders easily on various working conditions. The validation test on upper body postures was carried out to examine the accuracy of the measured joint angle data from the system, and the results showed good measuring performance for each joint angle. The differences between the joint angles measured directly and the angles measured by posture measurement software were not statistically significant. It is expected that the result help to properly estimate physical workload and can be used as a postural analysis system to evaluate the risk of work-related musculoskeletal disorders in industry.

레이저 변위계를 이용한 암석 절리면의 3차원 거칠기 측정기 개발 (Development of a 3D Roughness Measurement System of Rock Joint Using Laser Type Displacement Meter)

  • 배기윤;이정인
    • 터널과지하공간
    • /
    • 제12권4호
    • /
    • pp.268-276
    • /
    • 2002
  • In this study, a 3D coordinate measurement system equipped with a laser displacement meter for digitizing rock joint surface was established and the digitized data were used to calculate several roughness parameters. The parameters used in this study were micro avenge inclination $angle(i_{ave})$, average slope of joint $asperity(SL_{ ave})$, root mean square of $i-angle(i_{rms})$, standard deviation of height(SDH), standard deviation of $i-angle(SD_i)$, roughness profile $index(R_P)$, and fractal dimension(D). The relationships between the roughness parameters based on the digitzation of the surface profile were analyzed. Since the measured value varied according to the degree of reflection and the variation of colors at the measuring point, rock joint surface was painted in white to minimize the influence of the surface conditions. The comparison of the measured values and roughness parameters before and after painting revealed the better consequence from measurement on the painted surfaces. Also, effect of measuring interval was studied. As measured interval was increased, roughness parameters were exponentially decreased. The incremental sequence of degree of decrease was $SDH\; i_{ave},\; i_{rms},\; SD_i,\;and\; R_ p-1$. As a result of comparison of parameters from pin-type measurement system and laser type measurement system, all value of parameters were higher when laser-type measurement system was used, except SDH.