• Title/Summary/Keyword: joint element

Search Result 1,279, Processing Time 0.023 seconds

A numerical study on the coupled thermo-hydro-mechanical behavior of discontinuous rock mass (불연속암반에서의 열-수리-역학적 상호작용에 대한 수치해석적 연구)

  • 김명환;이희석;이희근
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • A finite element code was developed to analyze coupled thermo-hydro-mechanical phenomena. This code is based on the finite element formulation provided by Noorishad et al. (1984) and Joint behavior was simulated Goodman's joint constitutive model. The developed code was applied for T-H-M coupling analysis for two kinds of shaft models, with a joint or without a joint respectively. For a model without a joint, temperature increased from the shaft wall to outward evidently. The radial displacement showed opposite directions of outward and inward at some distance from shaft wall. For a model with a joint, closure of joint was found due to thermal expansion. The temperature distribution along a joint showed relatively lower than that of rock matrix because of low thermal conductivity and high specific heat of water. And it could be concluded that effects of thermal flow to joint were more than that of hydraulic flow in a rock mass.

  • PDF

INFLUENCE OF IMPLANT-ABUTMENT INTERFACE DESIGN, IMPLANT DIAMETER AND PROSTHETIC TABLE WIDTH ON STRENGTH OF IMPLANT-ABUTMENT INTERFACE : THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS (임플랜트의 지대주 연결방식, 임플랜트의 직경 및 지대주 연결부위의 직경 차이에 따른 응력분포에 관한 삼차원 유한요소분석)

  • Oh Se-Woong;Yang Jae-Ho;Lee Sun-Hyung;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.393-404
    • /
    • 2003
  • Statement of problem. Higher incidence of prosthetic complications such as screw loosening, screw fracture has been reported for posterior single tooth implant. So, there is ongoing research regarding stability of implant-abutment interface. One of those research is increasing the implant diameter and prosthetic table width to improve joint stability. In another part of this research, internal conical type implant-abutment interface was developed and reported joint strength is higher than traditional external hex interface. Purpose. The purpose of this study is to compare stress distribution in single molar implant between external hex butt joint implant and internal conical joint implant when increasing the implant diameter and prosthetic table width : 4mm diameter, 5mm diameter, 5mm diameter/6mm prosthetic table width. Material and method. Non-linear finite element models were created and the 3-dimensional finite element analysis was performed to see the distribution of stress when 300N static loading was applied to model at $0^{\circ},\;15^{\circ},\;30^{\circ}$ off-axis angle. Results. The following results were obtained : 1. Internal conical joint showed lower tensile stress value than that of external hex butt joint. 2. When off-axis loading was applied, internal conical joint showed more effective stress distribution than external hex butt joint. 3. External hex butt joint showed lower tensile stress value when the implant diameter was increased. 4. Internal conical joint showed lower tensile stress value than external hex butt joint when the implant diameter was increased. 5. Both of these joint mechanism showed lower tensile stress value when the prosthetic table width was increased. Conclusion. Internal conical joint showed more effective stress distribution than external hex joint. Increasing implant diameter showed more effective stress distribution than increasing prosthetic table width.

Stress Analysis of C.V. Joint Rubber Boots by Finite Element Method and Application to Design Modification (유한요소법을 이용한 등속 조인트 고무 부트의 변형해석 및 설계변경에의 응용)

  • Kim, S. H.;Lee, H. W.;Huh, H.;Lee, J. H.;Oh, S. T.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.123-137
    • /
    • 1998
  • The finite deformation with self contact problem of C. V. joint boots is analysed by using the implicit finite element code ABAQUS/Standard. It is shown that analysis results have a good agreement with experimental ones to the degree of maximum rotation angle. As an application of design modification, the effects of thickness change of the rounded part of boot model on the bending and the contact situation of deformed geometry are investigated. In this paper, the effect of the design modification in the end on the leakage is examined using 2-D finite element simulation. To solve the leakage problem of grease, the length of the small end is enlarged. From this study, it is confirmed that we can save the cost and time by applying FEM techniques to analyze and design the boot model.

  • PDF

Some Considerations on the Distinct Element Modelling for the Stability Analysis of a Tunnel in a Jointed Rock Mass (절리암반내 터널의 안정성 평가를 위한 개별요소 모델링에 대한 고찰)

  • Chang, Seok-Bue;Huh, Do-Hak
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.2
    • /
    • pp.3-12
    • /
    • 2001
  • This paper presents the proposed methods of DE (distinct element) modelling to estimate the stability of tunnels in jointed rock masses. First, the criterion to select the joint set(s) contributed to the discontinuous behaviour in a tunnel section is proposed. Selected joint set(s) is(are) considered to form the edges of distinct elements (rock blocks) and the others to modify the elastic properties of rock blocks. The complex DE model with the average and the deviation of joint orientation and joint length for each joint set was compared to the simple model with only the average of joint orientation and the assumption that joint length is infinite. As a result, the latter is suitable to the purpose of tunnel design because it can show the consistent behaviour of a jointed rock mass such as the locally discontinuous failure and the global anisotropic behaviour.

  • PDF

Structural Dynamics Analysis of a Clamp Jointed Complex Ream by Using the Flexibility Influence Coefficient Method (유연도 영향계수법을 이용한 접촉결합부가 있는 복합구조물의 동적 해석)

  • 조재혁;김현욱;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.528-533
    • /
    • 1995
  • An analyical method is proposed to construct a clamp jointed structure as an equivalent stiffness matrix element in the finite element modal analysis of a complex beam structure. Static structural analysis was first made for the detail finite element model of the clamp joint. Utilizing the results of this analysis, the equivalent stiffness matrix element was buildup by using the flexibility influence coefficient method and Guyan condensation. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam. And the finite element analysis results were compared to those experimental modal analysis. Comparison shows doog agreement each other Furthermore the effects of normal contact(or clamping) load on the equivalent stiffness matrix was also examined. The equivalent stiffness matrix showed little change in spite of the remakable increase in the contact load on the clamp joint.

  • PDF

Elasto-plastic Joint Finite Element Analysis of Root-pile Using the Direct Shear Test Model (직접전단시험모델에 의한 뿌리말뚝의 탄소성조인트 유한요소해석)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.4
    • /
    • pp.19-30
    • /
    • 2002
  • The stability of slope using root-pile like to the reinforcements is affected by the interaction behavior mechanism of soil-reinforcements. Through the studying on the interaction in joint of its, therefore, the control roles can be find out in installed slope. In study, the stress level ratio based on the insert angle of installed reinforcements in soil used to numerical analysis, which was results from the duty direct shear test in Lab. The maximum shear strain variation on the reinforcements was observed at insert angle, which was approximately similar to the calculated angle based on the equation proposed by the Jewell. The elasto-plastic joint model on the contact area of soil-reinforcements was presumed, the reinforced soil assumed non-linear elastic model and the reinforcements supposed elastic model, respectively. The finite element analysis of assumed models was performed. The shear strain variation of non-reinforced state obtained by the FEM analysis including elasto-plastic joint elements were shown the rationality of general limit equilibrium analysis for the slope failure mode on driving zone and resistance zone, which based on the stress level step according to failure ratio. Through the variation of shear strain for the variation of inserting angle of reinforcements, the different mechanism on the bending and the shear resistance of reinforcements was shown fair possibility.

Study on the mechanical behaviors of timber frame with the simplified column foot joints

  • Yang, Qing-shan;He, Jun-xiao;Wang, Juan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.383-394
    • /
    • 2021
  • Column foot in traditional Chinese timber structures may be subjected to be uplifted due to the lateral load and subsequently reset under the vertical loads. The residual moment of the rocking column foot is the most important parameter representing the mechanical behaviors of column foot, and the simplification of joints is the basis of structural analysis of whole structure. The complicated mechanical behaviors of joint and the modeling of the column foot joint has been undertaken historically based on the experiments and numerical simulation. On the condition of limited application range of those models, a lack of simplified model to represent the mechanical behaviors of joint deserves attentions. There is a great need to undertake theoretical studies to derive the residual moment and make better simplified model of the joint. This paper proposes the residual moment and equivalent simplified model of the rotational stiffness for column foot joint. And, the timber frame is established based on the simplified model, which is verified by solid finite element model. Results show that a mutual agreement on the mechanical behaviors of the timber frame is obtained between the simplified model and the solid finite element model. This study can serve as the references of the structural analysis for the traditional timber structures.

Dynamic Analysis of Design Data for Structural Lap Joint (LAP 구조물 결합부의 설계치 확보를 위한 동역학적 해석)

  • 윤성호
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.57-74
    • /
    • 1998
  • This paper is concerned with a combination of experimental and analytical investigation aimed at identifying modeling errors, accounted for the lack of correlation between experimental measurements and analytical predictions of the modal parameters for lap joint panels. A nonlinearity vibration test methodology, initiated from the theoretical analysis, is suggested for measurements of dynamic stiffnesses in a lap joint using the rivet fastener. Based on the experimental evidence on discrepancies between measured and predicted frequencies, improved finite element models of the joint are developed using PATRAN and ABAQUS, in which the beam element size is evaluated from the joint stiffnesses readily determined in the test. The beam element diameter as a principal design parameter is tuned to match experimental results within the evaluated bound value. Frequencies predicted by the proposed numerical model are compared with frequencies measured by the test. Improved predictions based on this new model are observed when compared with those based on conventional modeling practices.

  • PDF