• Title/Summary/Keyword: joint condition

Search Result 1,241, Processing Time 0.027 seconds

Effects of the Heat Treatment on the Microstructure and Mechanical Properties of the Diffusion-Bonded Ferritic/Martensitic Steel (확산접합된 페라이트/마르텐사이트강의 미세조직 및 기계적 특성에 미치는 열처리 효과)

  • Sah, Injin;Kim, Sunghwan;Hong, Sunghoon;Jang, Changheui
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.12-19
    • /
    • 2015
  • As a measure of improving the mechanical properties of a diffusion bonded joint of a ferritic/martensitic steel (FMS), the post-bonding heat treatment (PBHT) is applied. In the temperature range of normalizing condition ($950-1,050^{\circ}C$), diffusion bonding is employed with compressive stress (6 MPa). Due to the martensite structure distributed in the matrix, Vicker's hardness values of the as-bonded are much higher than those of the as-received. Through the PBHT for 1 h at $720^{\circ}C$, hardness values are recovered to as low as those of the as-received condition. Also, tensile properties of PBHT are similar to those of the as-received at up to the test temperature of $550^{\circ}C$, when the diffusion bonding is carried out over $1,000^{\circ}C$. Based on the creep-rupture testing performed at $650^{\circ}C$ in air environment, the joint efficiency of the PBHTed specimens is about 80% in, which is higher than that of the as-bonded specimens.

Effects of Tool Plunge Position on Mechanical Properties of Friction-stir-weleded Region in A6061-T6/AZ31 Dissimilar Metals (A6061-T6/AZ31 이종금속 마찰교반접합부의 기계적 특성에 미치는 툴 삽입 위치의 영향)

  • Lee, Kwang-Jin;Kim, Sang-Hyuk
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.22-26
    • /
    • 2012
  • Butt-joints of A6061-T6 and AZ31 plates were successfully manufactured by using a friction stir welding method. Off-set free joints and off-set joints were fabricated to investigate the effect of the tool plunge position on the mechanical properties of the joints. Hardness test, tensile test and charpy impact test was performed to evaluate the mechanical properties of the joints. Off-set condition resulted in increase of mechanical properties of the joints. The variation of the hardness distribution in the SZ was also stabilized in the off-set condition. Tensile strength of the off-set joint was about 85% against to that of the AZ31 base metal. Impact absorption energy by Charpy-Impact-Test of the off-set joint also increased by almost 2 times against to that of the AZ31 base metal.

A Systematic Approach to the Purchase Dependence (구매 종속적 수요에 대한 접근방법의 고찰)

  • Park, Changkyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.70-78
    • /
    • 2020
  • Under the situation which customer orders are cancelled unless all products in the order are delivered all at once, this paper concentrates on the purchase dependent demands and explores the systematic approach to implant the purchase dependence into the multi-product inventory model. First, by acknowledging that it is a challenging task to formulate a suitable inventory model for the purchase dependence, we derive the optimal solution condition using an EOQ model and extend the optimal solution condition to periodic review models. Then, through the comparison simulation of four inventory policies regarding several degrees of purchase dependence, we demonstrate that the inventory models which consider the purchase dependence generate less total cost than the inventory models which ignore the purchase dependence. In general, the inventory models which consider the purchase dependence reduce the loss of sales by maintaining more inventories, which results in reducing the total cost. Consequently, the simulation result supports the effectiveness of this paper's approach. In addition, this paper uses the individual order period and joint order period obtained from the EOQ model for the multi-product inventory model. Through the in-depth analysis of comparing the two models, we observe that the model of using the joint order period produces less total cost when the degree of purchase dependence is high, but the model of using the individual order period produces less total cost when the degree of purchase dependence is low.

Probabilistic Evaluation of Fatigue Life in High Frequency Electric Resistance Welded Joint of the Pipe (고주파 전기저항용접부 강관에서의 피로수명의 확률론적 평가)

  • Seo, Young-Bum;Kim, Choong-Myeong;Kim, Chul-Su;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.400-405
    • /
    • 2004
  • In this study, the optimal welding condition of the input power was selected experimentally through the ERW simulator, which is equal to welding status of ERW part in pipe. This condition is the input power 250kW in the heat treatment of the $900^{\circ}C$ normalizing derived from the nondestructive technique and impact energy. In order to evaluate the variation of the fatigue life in the pipe, fatigue surface crack growth test of base and optimal welded metal were performed statistically. As stress intensity factor range (${\Delta}K_s$) increases, the fatigue crack propagation rate (da/aN) of the base metal is faster than that of the welded joint. The variation of the fatigue life in the ERW pipe was estimated statistically using Monte-Carlo simulation with the standard deviation of material constants (C and m) of the paris law in the specimen.

  • PDF

Constructability of a Waterproofing Sheet Joint Combining an Aluminum Thin-film and Viscosity Layer Using a High-frequency Inductive Heating Apparatus (고주파 유도가열 장치를 이용한 알루미늄 박판 점착 복합방수시트 조인트부의 시공성)

  • Chang, Sang Mook;Kim, Yun Ho;Choi, Sung Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.163-169
    • /
    • 2014
  • Engineers in the construction field have been using bonded waterproofing sheets in an attempt to resolve the imbalance in the quality, the risk of fire, safety of workers, and environmental pollution, as well as to eliminate separate use of organic adhesives on the surface of concrete. Recently, self-laminated waterproofing sheets have been developed. The purpose of this research is to find an appropriate processing speed according to the changes in physical properties, and visual observation of the waterproofing sheets laminated by the aluminum thin-film and viscosity layer that can be attached through self-adhesiveness on the surface of concrete and waterproofing sheets. Therefore, this research is conducted using a physical performance test. Based on the result of the test, when the high-frequency inductive heating apparatus was used, an improved adhesion and bonding stability effect were confirmed after the anti-hydrostatic pressure and bond strength in the temperature condition, and the surface observation in the processing speed condition.

Biomechanical Analysis of the Effect that Various Loads has on the Lower Limbs while Descending Stairs (성인의 하향계단 보행 시 중량에 따른 하지의 운동역학적 변인 분석)

  • Moon, Je-Heon;Chun, Young-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.245-252
    • /
    • 2013
  • The purpose of this study was to analyze the effect that various loads have on the lower limb biomechanics. The following variables were measured and analyzed; performance time for each phase, lower limb moments and joint angles, and ground reaction forces. The kinematic and kinetic data was recorded by 2 force platforms and a motion capture system while 12 healthy adults in their twenties stepped down three steps under loads of 0%, 10%, 20% BW. Results are as follows. First, the different loading conditions did not seem to significantly affect the performance times and the joint angles. Second, the largest ground reaction forces were observed at the 1 step at the 10% BW condition. Finally, at the 0% BW loading condition the right hip extension moment was the smallest and the left hip flexion moment was the largest. The results show that there are not any significant changes in the biomechanics of the lower limbs under loading conditions up to 20% BW. Further investigations including more loading conditions with more weights and more additional steps analyzed are needed.

The Low Cycle Fatigue Behavior of Laser Welded Sheet Metal for Different Materials (이종재료 레이저 용접 판재의 저주기 피로 특성)

  • Kim Seog-Hwan;Kwak Dai-Soon;Kim Woong-Chan;Oh Taek-Yul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.627-631
    • /
    • 2005
  • In this study, low fatigue behavior of laser welded sheet metal were investigated. Before welding, the cross section of butt joint was prepared only by fine shearing without milling process. Specimens were same sheet metal and welding condition that using automobile manufacturing company at present. Butt joint of cold rolled sheet metal was welded by $CO_2$ laser. It is used that welding condition such as laser welding speed was 5.5m/sec and laser output power was 5kW for 0.8mm and 1.2mm sheet metal. The laser weldments were machined same or different thickness and same or different material. In order to mechanical properties of around welding zone, hardness test was performed. Hardness of welding bead is about 2 times greater than base material. We performed the low cycle fatigue tests for obtaining fatigue properties about thickness and the weld line direction of specimen. The results of strain controlled low cycle fatigue test indicate that all specimens occur cyclic softening, as indicated by the decrease in stress to reach a prescribed strain.

  • PDF

A Study on the Strength of Brazed Joint for Automotive EGR Cooler by Heat Treatment Conditions (열처리조건에 의한 자동차용 EGR쿨러의 브레이징부 접합강도에 관한 연구)

  • Lee, Joon;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.4
    • /
    • pp.210-216
    • /
    • 2009
  • Stainless steel EGR cooler of diesel engine is widely used to prevent the corrosion due to the content of sulfur in diesel fuel. The strength of brazed joint between stainless steel materials is very important. It is essential to observe the spreading ratio of the filler metals under the condition of deoxidation or vacuum during heating process. In this experiment, spreading ratio was tested to find the optimum brazing condition for stainless steel using brazing filler metals of FP-613, BNi-2 and BNi-5 on sus304 and sus410. Anti-corrosion tests were also performed on the above filler metals with solution of 5% $H_2SO_4$, 65% $HNO_3$ and 5% $NH_4OH$. Consequently FP-613 has good ability for anti-corrosion with 30% of chromium content compared with other filler metals. The optimum brazing conditions are occurred at $960^{\circ}C$ for 90 min. and at $1090^{\circ}C$ for 50 min. at the same degree of vacuum, $2{\sim}3{\times}10^{-3}$ Torr.

Effects of Unilateral or Bilateral Ankle Immobilization on Postural Balance During Quiet Standing (정적 서기 동안 한쪽 또는 양쪽 발목관절 고정이 자세균형에 미치는 영향)

  • Han, Jin Tae
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.3
    • /
    • pp.56-62
    • /
    • 2022
  • Background: The purpose of this study was to investigate the effects of ankle joint immobilization on postural balance during quiet standing. Design: Cross-sectional study Methods: Twenty-seven healthy subject participated in this study. The subjects performed to stand quietly for 30s in eyes open on the platform with three different conditions. The sway length, sway area and sway velocity of center of gravity (COG) displacement and limit of stability (LOS) was measured using the balance platform. Repeated measured ANOVA was used to compare the postural balance parameters depending on three different ankle immobilized conditions. Results: Sway length, sway area and sway velocity of the COG displacement with bilateral ankle immobilized condition was significantly increased compared to those of the other two conditions(p<0.05). All directions of LOS with bilateral ankle immobilized condition were significantly decreased compared to those of the other two conditions. Conclusion: These findings suggest that ankle joint immobilization could be one of the factors that interfere the maintaining of the postural balance in quiet standing.

An experimental study on behavior of tunnel in jointed rock mass (절리암반내 터널라이닝 거동에 관한 실험적 연구)

  • Oh, Young-Seok;Park, Yong-Won;Yoon, Hyo-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.4
    • /
    • pp.315-326
    • /
    • 2004
  • This study performed model tunnel tests in order to investigate the influence of discontinuity condition of rock mass to the stress and deformation of tunnel lining. Tests were carried out changing the direction of main joint and lateral earth pressure condition of rock mass. Test results revealed that the axial force in tunnel lining showed a tendency of decrease with the presence of joints. It decreased much with the increase of lateral earth pressure coefficient. And, it also showed that the location or maximum displacement and maximum stress in lining were changed by the direction of main joint of rock mass. The tangential stress and normal stress showed the difference above the maximum twenty times as lateral earth pressure coefficient due to effect of joints increased. Also, these tendencies of concentration of tensile stress in tunnel lining were confirmed by elastic theory.

  • PDF