• Title/Summary/Keyword: joint condition

Search Result 1,241, Processing Time 0.024 seconds

Changes of postural stability according to ankle fixation in healthy subjects

  • Jeong, Su-Hyeon;Mun, A-Young;Lee, Song-Eun;Kim, Min-Ju;Lee, Hui-Jin;Baek, Kook-Bin;Cho, Ki Hun
    • Physical Therapy Rehabilitation Science
    • /
    • v.8 no.1
    • /
    • pp.40-44
    • /
    • 2019
  • Objective: The purpose of this study was to examine the changes in postural stability according to ankle fixation in healthy university students. Design: Cross-sectional study. Methods: Thirty healthy subjects (15 males and 15 females, 20.13 years, 167.49 cm, 65.87 kg) were recruited on a voluntary basis. The BT4 system (HUR Laps Oy, Tampere, Finland) was used to measure the static (standing posture with eyes open and eyes closed) and dynamic (external perturbation and limits of stability (LOS) in the forward, backward, left, and right side) balance abilities. External perturbation was measured by the subject's postural sway velocity and area for 20 seconds after being impacted by a gym ball. Static and dynamic stabilities were measured with ankle joint fixation and non-fixation conditions. Ankle fixation was provided using Mueller tape on both ankle joints. Results: For static stability under the standing posture, there was no significant difference between standing with ankle joint fixation and non-fixation conditions. However, dynamic stability (external perturbation and LOS in the forward, backward, left, and right side) was significantly higher in the standing with the non-fixation condition compared to the standing with ankle joint fixation condition (p<0.05). Conclusions: Our results reveal that ankle joint fixation can influence dynamic stability during standing. Thus, we believe that this result provides basic information for making improvements in postural control and may be useful in balance training for fall prevention.

Effect of Construction Joint on Leakage Resistance of Gas in Reinforced Concrete Pressure Vessels (철근콘크리트 압력용기에서 시공이음이 가스의 누설저항에 미치는 영향)

  • Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.87-94
    • /
    • 2017
  • In the nuclear power plant, the steel or polymer liner plates are adopted to prohibit the inner concrete surface from contacting with gas or liquid materials. If there is an accident, the plate may be damaged, and, in this case, concrete shall have the final responsibility to safety requirements. In this paper, an experimental research was carried out to investigate the effects of construction joint and wet and loading conditions on the permeability of concrete. The test results showed that, under a construction joint in the wet condition, leakage of gas pressure has been started from $1kg/cm^2$. However, when there are no construction joints, it is initiated from $2kg/cm^2$. In addition, under the air dried and unloading condition, regardless of with or without the presence of the construction joint, since the gas passage that exist in concrete is constant, leakage has a constant tendency to increase. Finally, under the loading condition, as described in Reference 1, since leakage is inversely proportional to the thickness of the wall, and, considering the wall thickness of the actual plant, it is found that there will not be no problem in the sealing of the gas.

The Effects of Slab Size on Pavement Life Cycle Cost

  • Parsons, Timothy A.;Hall, Jim W.Jr
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.49-54
    • /
    • 2006
  • The purpose of this study was to determine the effect of expansion joint spacing (slab size) on the life cycle costs of owning Portland Cement Concrete (PCC) airfield pavements. Previous research has shown that slab size has a statistically significant impact on pavement performance. A probabilistic life cycle cost analysis was performed to determine if the effect of slab size on pavement performance would affect the total cost of ownership of PCC pavements. Data from 48 Pavement Condition Index (PCI) inspections of military and civilian airfields were used to develop probability-of-distress-by-condition curves, which were then used to develop probabilistic cost-of-repair-by-condition curves. A present worth life cycle cost analysis was then performed for various slab sizes, using construction costs, rehabilitation costs, and maintenance costs. Maintenance costs were determined by assuming a condition deterioration rate appropriate for each slab size and applying the cost-by-condition curves. The probabilistic cost-of-repair-by-condition curves indicated that smaller slabs are more expensive to repair on a unit cost basis. Life cycle cost analysis showed that larger slabs have a higher total cost of ownership than smaller slabs due to a faster rate of deterioration.

  • PDF

Fracture Behaviors of Jointed Rock Model Containing an Opening Under Biaxial Compression Condition (이축압축 조건에서 공동이 존재하는 유사 절리암반 모델의 파괴 거동)

  • SaGong, Myung;Yoo, Jea-Ho;Park, Du-Hee;Lee, J.S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.17-30
    • /
    • 2009
  • Underground construction such as tunneling can induce damages on the surrounding rock mass, due to the stress concentration of in situ stresses and excessive energy input during construction sequence, such as blasting. The developed damage on the rock mass can have substantial influence on the mechanical and hydraulic behaviors of the rock masses around a tunnel. In this study, investigation on the generation of damage around an opening in a jointed rock model under biaxial compression condition was conducted. The joint dip angles employed are 30, 45, and 60 degrees to the horizontal, and the synthetic rock mass was made using early strength cement and water. From the biaxial compression test, initiation and propagation of tensile cracks at norm to the joint angle were found. The propagated tensile cracks eventually developed rock blocks, which were dislodged from the rock mass. Furthermore, the propagation process of the tensile cracks varies with joint angle: lower joint angle model shows more stable and progressive tensile crack propagation. The development of the tensile crack can be explained under the hypothesis that the rock segment encompassed by the joint set is subjected to the developing moment, which can be induced by the geometric irregularity around the opening in the rock model. The experiment results were simulated by using discrete element method PFC 2D. From the simulation, as has been observed from the test, a rock mass with lower joint angle produces wider damage region and rock block by tensile cracks. In addition, a rock model with lower joint angle shows progressive tensile cracks generation around the opening from the investigation of the interacted tensile cracks.

Observation of bilaminar zone in magnetic resonance images of temporomandibular joint

  • Nah Kyung-Soo
    • Imaging Science in Dentistry
    • /
    • v.31 no.4
    • /
    • pp.221-225
    • /
    • 2001
  • Purpose: To observe the relationship of bilaminar zone of temporomandibular joint retrodiscal tissues to the disc condition. Materials and Methods : The upper and lower stratum of bilaminar zone were identified on magnetic resonance open mouth images of 148 joints from 74 patients with disc displacements. Results: Both strata were identifiable in 105 joints which had disc displacement with reduction. Lower stratum was not identifiable in 35 joints which had disc displacement without reduction but 12 of 35 had hyalinized posterior attachment where the disc was. The 8 joints which had partial disc displacement without reduction showed identifiable lower stratum at the reducing site which was medial. Conclusion: Disruption or no identification of lower stratum which corresponds to the condylar portion of posterior attachment may be the sign of disc displacement without reduction.

  • PDF

Energy Optimization of a Biped Robot for Walking a Staircase Using Genetic Algorithms

  • Jeon, Kweon-Soo;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.215-219
    • /
    • 2003
  • In this paper, we generate a trajectory minimized the energy gait of a biped robot for walking a staircase using genetic algorithms and apply to the computed torque controller for the stable dynamic biped locomotion. In the saggital plane, a 6 degree of freedom biped robot that model consists of seven links is used. In order to minimize the total energy efficiency, the Real-Coded Genetic Algorithm (RCGA) is used. Operators of genetic algorithms are composed of a reproduction, crossover and mutation. In order to approximate the walking gait, the each joint angle is defined as a 4-th order polynomial of which coefficients are chromosomes. Constraints are divided into equality and inequality. Firstly, equality constraints consist of position conditions at the end of stride period and each joint angle and angular velocity condition for periodic walking. On the other hand, inequality constraints include the knee joint conditions, the zero moment point conditions for the x-direction and the tip conditions of swing leg during the period of a stride for walking a staircase.

  • PDF

Stiffness Evaluation of Steel Beam-to-Column Joints Using Component method (Component method를 이용한 철골 보-기둥 죠인트의 강성평가)

  • 양철민;조지은;김영문
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.243-250
    • /
    • 2004
  • This paper reports on the evaluation of the initial stiffness of steel joints using component method as well as experimental tests. The so-called component method corresponds precisely to a simplified mechanical model composed of extensional springs and rigid links, whereby the joint is simulated by an appropriate choice of rigid and flexible components. An application to a cantilever beam-to-column steel joint is presented and compared to the experimental results obtained under cyclic loading condition. Comparison between numerical and experimental results allows to conclude that the numerical model is able to simulate, with a good level of accuracy for initial stiffness, the behaviour of beam-to-column joints.

  • PDF

Neuropathic Arthropathy of the Shoulder Associated with Cervical Syringomyelia: A Case Report

  • Park, Jaehyun;Im, Taekang;Moon, Jinsun;Lee, Yongbeom
    • Clinics in Shoulder and Elbow
    • /
    • v.18 no.4
    • /
    • pp.261-265
    • /
    • 2015
  • Neuropathic shoulder arthropathy or Charcot's shoulder is an extremely rare disease, and sometimes it is associated with cervical syringomyelia. Clinical symptoms of the disease include edema of the shoulder and restriction in range of motion. Radiological diagnosis can be made through plain radiography through a characteristic, atrophic destruction of the joint. We experienced a Charcot's joint of the shoulder wherein destruction of the joint progressed extremely quickly and reviewed the literature concerning this condition.

Posterior Disk Displacement in the Temporomandibular Joint: A Report of Two Cases

  • Kim, Jihoon;Kim, Moon-Jong;Kho, Hong-Seop
    • Journal of Oral Medicine and Pain
    • /
    • v.41 no.3
    • /
    • pp.137-143
    • /
    • 2016
  • Posterior disk displacement (PDD) of the temporomandibular joint (TMJ) is a rare condition and most descriptions of TMJ PDD are about the adhesion of superior TMJ in which the position of disk is relatively posterior to anteriorly translated condyle in open mouth position. However, there have been reports about truly posteriorly positioned disk to the condyle in closed mouth position. This type of PDD has been classified into three subtypes-thin flat disk type, grossly posterior displaced disk type, and perforated disk type. Here, we report two rare cases of TMJ PDD, one with thin flat disk and one with perforated disk. Its possible etiology, pathogenetic mechanisms, related signs and symptoms, differential diagnoses, and treatments were reviewed and discussed.

A Study on the Distribution of Residual Stress in Fillet Welds for Thick Mild Steel Plate (두꺼운 연강판(軟鋼板) 필렛 용접(熔接)이음부의 잔류응력분포(殘留應力分布)에 대한 연구(硏究))

  • Dong-Suk,Um;Sung-Won,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.4
    • /
    • pp.17-24
    • /
    • 1983
  • In this study, it was investigated the distribution of residual stress in the direction of loading between the root and toe the load fillet welds for thick steel plate. Residual stress distributions are measured by sectioning method which is one of stress-relaxation technique in welded joint, and analyzed by two dimensional finite element method on thermo-elasto-plastic theory under plane stress condition. These are compared the results of F.E.M analysis with the experimental result by stress-relaxation techniques. As a results, the following conclusion were obtained. (1) In the no penetration fillet welded joint specimen using mild steel plate with 25mm in thickness, the residual stress of loading direction near the root was about $10kg/mm^2$ tensile. (2) The tensile residual stress has been observed in fillet region of the fillet joint by F.E.M. analysis method. (3) The range of compressive residual stress distribution from the root was largest in the case of 5mm root penetration.

  • PDF