• Title/Summary/Keyword: joint actuator

Search Result 191, Processing Time 0.033 seconds

Design of an 1 DOF Assistive Knee Joint for a Gait Rehabilitation Robot (보행 재활 로봇 개발을 위한 1자유도 무릎 관절 설계)

  • Lee, Sanghyeop;Shin, Sung Yul;Lee, Jun Won;Kim, Changhwan
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.8-19
    • /
    • 2013
  • One of the important issues for structural and electrical specifications in developing a robot is to determine lengths of links and motor specifications, which need to be appropriate to the purpose of robot. These issues become more critical for a gait rehabilitation robot, since a patient wears the robot. Prior to developing an entire gait rehabilitation robot, designing of a 1DOF assistive knee joint of the robot is considered in this paper. Human gait motions were used to determine an allowable range of knee joint that was rotated with a linear type actuator (ball-screw type) and links. The lengths of each link were determined by using an optimization process, minimizing the stroke of actuator and the total energy (kinetic and potential energy). Kinetic analysis was performed in order to determine maximum rotational speed and maximum torque of the motor for tracking gait trajectory properly. The prototype of 1 DOF assistive knee joint was built and examined with a impedance controller.

Study on the Piezoelectric Bender Actuator for Small Walking Robots

  • Park, Min Ho;Park, Jong Man;Song, Chi Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.276-280
    • /
    • 2020
  • A linear piezoelectric actuator that utilizes the elliptical motion of the two tips of the actuator is proposed. This device is easy to fabricate owing to its simple structure, consisting of three piezo ceramic benders and is suitable for use in micro robotic applications. A π-shaped structure, which was composed of four piezo ceramic benders, was constructed. Two of the benders were positioned on the center of the actuator, and the joints were attached at the ends of the cantilever. The other two benders were positioned on the side of the actuator and were attached between the joint and the tips. The actuator structure was designed to obtain the first bending mode of the horizontal vibration and the vertical vibration at the same frequency, resulting in elliptical motions at the tips. When two sinusoidal wave voltages with a 90-degree phase difference were applied to the two pairs of the actuator benders, elliptical motions were obtained at the tips. The driving characteristics of the prototype actuator were then measured using a laser doppler vibrometer.

A stable composite controller design for flexible joint robot manipulators (탄성관절을 갖는 로보트 매니퓰레이터의 안정한 합성제어기 설계)

  • 이만형;백운보;이권순;배종일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.266-271
    • /
    • 1992
  • This paper presents a new stable composite control law for the flexible joint robot manipulators, which incorporate the additional stabilizing control law with sliding property. The singularly perturbated models include inertia moments functions of the deformations of actuator. The newly defined fast controller variable is computed from the corrected reduced-order model without additional computational loads. The simulations for 2 DOF flexible joint manipulator show that the proposed schemes are more stable than conventional one, and especially effective for the manipulator with high joint-flexibilities.

  • PDF

Development of a New Robot Manipulator Driven by the Closed-chain Actuator (폐체인 구조의 새로운 다관절 로봇 매니퓰레이터 개발)

  • 최형식;백창열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.238-245
    • /
    • 2003
  • To overcome the weakness in the load capacity of conventional robot manipulators actuated by motors with the speed reducer such as the harmonic driver, we proposed a new closed-chain type of the robot actuator which is composed of the four-bar-link mechanism driven by the ball screw. The robot manipulator is revolute-jointed and composed of four axes. The base axis is actuated by the lineal actuator such as the ball screw, and the others are actuated by the proposed actuator. We analyzed the mechanism of the actuators of the robot joints, and developed the dynamics model. The dynamics are expressed in the joint coordinates and then they are mapped into the sliding coordinates of the ball screw. We performed fundamental tests on the structure of the robot.

An study on the development of BLDC motor and Planetary gearheads for robot joint (로봇 관절용 고출력 BLDC 모터 및 유성 감속기 개발에 관한 연구)

  • Kim, Joo-Han;Rhyu, Se-Hyun;Chung, Jung-Kee;Sung, Ha-Kyeong;Lee, Jong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.135-137
    • /
    • 2002
  • Many application in robotics, telecommunication, automation systems etc require powerful actuator. The powerful actuator have Speeds up to high speed and high output torque efficiencies. To accomplish a powerful actuator, these powerful motor have to be combined with gearheads of the same outer diameter. So, we have developed BLDC motor and planetary type gearheads as powerful actuator. The BLDC motor have advantages that compact structure, high efficiency, high reliability. The Planetary type gearheads have advantages that same-axle structure, high torque transmission, low noise in comparison with spur gearheads. In this study included BLDC motor and planetary type gearheads design, manufacture. This time study peformed for actuator of entertainment robot.

  • PDF

Redundancy Resolution by Minimization of Joint Disturbance Torque for Independent Joint Controlled Kinematically Redundant Manipulators

  • Park, Myoung-Hwan
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.56-61
    • /
    • 2000
  • Majority of industrial robots are controlled by a simple independent joint control of joint actuators rather than complex controllers based on the nonlinear dynamic model of the robot manipulator. In this independent joint control scheme, the performance of actuator control is influenced significantly by the joint disturbance torques including gravity, Coriolis and centrifugal torques, which result in the trajectory tracking error in the joint control system. The control performance of a redundant manipulator under independent joint control can be improved by minimizing this joint disturbance torque in resolving the kinematic redundancy. A 3 DOF planar robot is studied as an example, and the dynamic programming method is used to find the globally optimal joint trajectory that minimize the joint disturbance torque over the entire motion. The resulting solution is compared with the solution obtained by the conventional joint torque minimization, and it is shown that joint disturbance can be reduced using the kinematic redundancy.

  • PDF

Baseplate Design to Improve Swaging Performance of Actuator in a HDD (HDD 액추에이터의 스웨이징성능향상을 위한 베이스플레이트 최적설계)

  • Lee, Haeng-Soo;Hong, Eo-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.760-766
    • /
    • 2009
  • In the manufacturing process of HDD, ball swaging method is commonly used to joint the Head Gimbal Assembly(HGA) with the arm of the actuator. The hub on the HGA is placed into the hole of the actuator arm, and the hub and arm is bonded by the pressure of steel ball. The pressure for plastic deformation on the baseplate causes the undesirable deformation on HGA, such as tilting, flying height change of head. After obtaining the key parameters that have large sensitivity on the swaging process, the optimal shape of baseplate is proposed to increase the static performance during swaging process. Contribution of the proposed design for the swaging performance is verified by contact simulation with elasto-plastic deformation.

A Position Control for a Parallel Stage with 6 degrees of freedom Using Magnetic Actuators (전자기 구동장치를 이용한 병렬형 6자유도 스테이지의 위치제어)

  • Lee Se-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.102-111
    • /
    • 2005
  • In this paper, we address a position control for a parallel stage, which is levitated and driven by electric magnetic force. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal force. A dynamic equation of the stage system is derived based on Newton-Euler method and it's special Jacobian matrix describing a relation between the limited velocity and Cartesian velocity is done. There are proposed two control methods for positioning which are Cartesian space controller and Actuator space controller. The control performance of the Cartesian space controller is better than the Actuator space controller in task space trajectory while the Actuator space controller is simpler than the Cartesian space controller in controller realization.

Posture control of double inverted pendulum with a single actuator (단일 구동부를 갖는 2축 도립진자의 자세제어)

  • Yi, Keon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.577-584
    • /
    • 1999
  • In this paper, the double inverted pendulum having a single actuator is built and the controller for the system is proposed. The lower link of the target pendulum system is hinged on the plate to free for rotation in the specified range($10^{\cire}$) on the x-z plane. The upper link is connected to the lower link through a DC motor. The double inverted pendulum built can be kept upright posture by controlling the position of the upper link even though it has no actuator in lower hinge. The algorithm to control the inverted pendulum consists of a state feedback controller within a linearizable range and a fuzzy logic controller coupled with a nonlinear feedback compensator for the rest of the range. Conventional state feedback control is employed, and the fuzzy controller is responsible for generating the reference joint angle of the upper link for the nonlinear feedback compensator which drives a DC motor to generate an indirect torque to the lower joint. As a result, we can get the upright posture of the proposed pendulum system. Simulations and experiments are conducted to show the validity of the proposed controller.

  • PDF

Double Actuator Unit based on the Planetary Gear Train Capable of Position/Force Control (위치/힘 제어가 가능한 유성기어 기반의 더블 액츄에이터 유닛)

  • Kim, Byeong-Sang;Park, Jung-Jun;Song, Jae-Bok;Kim, Hong-Seok
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.81-88
    • /
    • 2006
  • Control of a robot manipulator in contact with the environment is usually conducted by the direct feedback control using a force-torque sensor or the indirect impedance control. In these methods, however, the control algorithms become complicated and the performance of position and force control cannot be improved because of the mechanical properties of the passive components. To cope with such problems, redundant actuation has been used to enhance the performance of position control and force control. In this research, a Double Actuator Unit (DAU) is proposed, with which the force control algorithm can be simplified and can make the robot ensure the safety during the external collision. The DAU is composed of two actuators; one controls the position and the other modulates the joint stiffness. Using this unit, it is possible to independently control the position and stiffness. The DAU based on the planetary gears is investigated in this paper. Performance using the DAU is also verified by various experiments. It is shown that the manipulator using this mechanism provides better safety during the impact with the environment by reducing the joint stiffness appropriately on detecting the collision of a manipulator.

  • PDF