• Title/Summary/Keyword: jet stream

Search Result 186, Processing Time 0.032 seconds

The Development of Multi Pieces Gas Cutting Tip (분리형 가스절단팁 개발)

  • 이권희;김지온;하지수;박부민
    • Proceedings of the KWS Conference
    • /
    • 1999.10a
    • /
    • pp.146-149
    • /
    • 1999
  • To develope the high speed gas cutting tip, consists of 3 pieces, supersonic axisymmetric jets issuing from various kinds of nozzles with a throat diameter of a few milimeters were experimentally investigated. The nozzle inlet pressure was varied from 4 to 8 kgf/$\textrm{cm}^2$. The parameters in nozzle design were throat diameter, throat length, taper angle, outlet diameter. The total pressure variation was measured by the pilot tube, 0.5mm outer diameter, along the center of the free stream jet. Also color Shilieren system was used to visualize the flowfield.

  • PDF

FLUENT MODELLING OF CAVITATION IN POPPET VALVES (포펫트밸브내에서의 캐비테이션에 관한 FLUENT 모델링)

  • Chung-Do, Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.2
    • /
    • pp.113-123
    • /
    • 1999
  • The aim of this paper was to expand on work already carried out on the modelling of the flow through a poppet valve using CFD software FLUENT V4.22. Several different models were run on FLUENT for various lifts of the poppet cone and various back pressures. The results for pressure and velocity obtained were interpreted. The results revealed the presence of cavitation downstream of the orifice around the cone tip, and the presence of a high velocity jet stream along the centre line. These results confirm what has been found to happen in practice.

  • PDF

Effect of Temperature Variations on Heat Transfer Coefficient in Crossflow over a Circular Cylinder (온도변화가 실린더 주위 열전달계수에 미치는 영향에 관한 실험적 연구)

  • Kauh, S.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.2
    • /
    • pp.137-145
    • /
    • 1992
  • coefficient precisely, experiments were carried out in three categories which contain the regime of (1) constant wire temperature (2) constant fluid temperature (3) constant temperature difference between wire and fluid. Measurements were made with electrically heated circular tungsten wire placed normal to air stream at the exit of jet. Heat transfer coefficient was increased with wire temperature increasing and decreased by fluid temperaure increasing and was not changed with varying both temperature if their difference were kept constant.

  • PDF

Nozzle configurations for partially premixed interacting jet flame to enhance blowout limits (다수 부분 예혼합 화염의 화염날림 유속 확대)

  • Lee, Byeong-Jun;Kim, Jin-Hyun
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.79-84
    • /
    • 2004
  • For the non-premixed interacting jet flames, it has been reported that if eight small nozzles are arranged along the circle of 40 $^{\sim}$ 72 times the diameter of single jet, the flames are not extinguished over 2oom/s. In this research, experiments were extended to the partially premixed cases to reduce both flame temperature and NOx emission. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric centre. The space between nozzles, S, the equivalence ratio, ${\Phi}$, the exit velocity and the role of the jet from the centre nozzle were considered. Normally, flame was lifted and flame base was located inside the imaginary circle made by the nozzle. As nozzles went away from each other, blowout velocity increased and then decreased. The maximum blowout velocity diminished with the addition of air to the fuel stream. When the fuel and/or oxidizer were not fed through the centre nozzle, the maximum blowout velocity obtained by varying Sand ${\Phi}$ was around 160m/s. Optimum nozzle separation distance at which peak blowout velocity obtained also decreased with ${\Phi}$ decrease. Flame base became leaner as approaching to the blowout. It seemed that lots of air was supplied to the flame stabilizing region by the entrainment and partially premixing. To approve this idea and to enhance the blowout velocity, fuel was supplied to the centre region. With the small amount of fuel through the centre nozzle, partially premixed flame could be sustained till sonic velocities. It seemed that the stabilizing mechanism in partially premixed interacting flame was different from that of non-premixed case because one was stabilized by the fuel supply through the centre nozzle but the other destabilized.

  • PDF

An Experimental Investigation on the Flow Field around the Wing Having a Circular Damage Hole (원형 손상 구멍이 있는 날개 주위 유동장에 관한 실험적 연구)

  • Lee, Ki-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.954-961
    • /
    • 2008
  • An experimental study has been conducted to investigate the flow field around the wing having a circular damage hole. The damage was represented by a circular hole passing through the model with 10% airfoil chord diameter and normal to the chord. The hole was centered at quarter or half chord. The PIV flow fields and static pressure measurements on the wing upper and lower surface were carried out at Rec=2.85×105 based on the chord length. The PIV results showed the two types of flow structures around a damage hole were formed. The first one was a weak jet that formed an attached wake behind the damage hole. The second one resulted from increased incidence; this was a strong jet where the flow through the hole penetrates into the free-stream resulting in extensive separation of oncoming boundary layer flow and development of a separated wake with reverse flow. The surface pressure data showed a big pressure alteration near the circular damage hole. The severity of pressure alteration was increased as a damage hole located nearer to the leading edge.

The Effects of Carbon Dioxide as Additives on Soot Formatio in Jet Diffusion Flames (제트확산화염에서 이산화탄소의 첨가가 매연생성에 미치는 영향)

  • Ji, Jung-Hoon;Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.170-175
    • /
    • 2010
  • The effect of carbon dioxide addition on soot formation was investigated in jet diffusion flames in coflow. Flame temperature were measured with R-type thermocouple and the boundary temperature between blue and yellow flame was confirmed. Light-extinction method was introduced for the relative soot density (1-I/$I_0$) in the in-flame region. He-Ne laser with wave length at 632.8 nm was used for the light source, and the signal attenuated by absorption and scattering was detected directly. Oxidizer velocity effect on soot formation was studied to know that the thermal influence for soot formation. The results showed that the temperature of both blue and yellow flame were decreased according to the dilution of carbon dioxide but boundary temperature was nearly constant. The relative soot density was lower when carbon dioxide was added in oxidizer stream and oxidizer velocity increased. These were caused by the reduction of flame temperature and shorter residence time for soot growth. Also carbon dioxide addition enhanced the instability of jet flames like flickering, so the flame length was a little longer than pure ethylene/air flame.

STUDY OF FLARE-ASSOCIATED X-RAY PLASMA EJECTIONS : II. MORPHOLOGICAL CLASSIFICATION

  • KIM YEON-HAN;MOON Y.-J.;CHO K.-S.;BONG SU-CHAN;PARK Y.-D.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.171-177
    • /
    • 2004
  • X-ray plasma ejections often occurred around the impulsive phases of solar flares and have been well observed by the SXT aboard Yohkoh. Though the X-ray plasma ejections show various morphological shapes, there has been no attempt at classifying the morphological groups for a large sample of the X-ray plasma ejections. In this study, we have classified 137 X-ray plasma ejections according to their shape for the first time. Our classification criteria are as follows: (1) a loop type shows ejecting plasma with the shape of loops, (2) a spray type has a continuous stream of plasma without showing any typical shape, (3) a jet type shows collimated motions of plasma, (4) a confined ejection shows limited motions of plasma near a flaring site. As a result, we classified the flare-associated X-ray plasma ejections into five groups as follows: loop-type (60 events), spray-type (40 events), jet-type (11 events), confined ejection (18 events), and others (8 events). As an illustration, we presented time sequence images of several typical events to discuss their morphological characteristics, speed, CME association, and magnetic field configuration. We found that the jet-type events tend to have higher speeds and better association with CMEs than those of the loop-type events. It is also found that the CME association (11/11) of the jet-type events is much higher than that (5/18) of the confined ejections. These facts imply that the physical characteristics of the X-ray plasma ejections are closely associated with magnetic field configurations near the reconnection regions.

Characteristics of the Transverse Fuel Injection into a Supersonic Crossflow using Various Injector Geometries (분사구 형상에 따른 초음속 유동장 내 수직 연료 분사 특성)

  • Kim, Seihwan;Lee, Bok Jik;Jeung, In-Seuck;Lee, Hyoungjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.53-64
    • /
    • 2018
  • In this study, computational simulation was performed to investigate the characteristics of air/fuel mixing according to the shape of the injector exit when the transverse jet was injected into a supersonic flow. Non-reacting flow simulation was conducted with fixed mass flow rate and the same cross-sectional area. To validate the results, free stream Mach number and jet-to-crossflow memetum ratio are set to 3.38 and 1.4, respectively, which is same as the experimental condition. Further, separation region, structure of the under-expended jet, jet penetration height, and flammable region of hydrogen for five different injectors compared.

Nozzle Configurations for Partially Premixed Interacting Jet Flame to Enhance Blowout Limits (화염의 상호작용에 의한 부분 예혼합화염의 화염날림 유속 확대)

  • Kim, Jin-Hyun;Lee, Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.71-79
    • /
    • 2005
  • For the non-premixed interacting jet flames, it has been reported that if eight small nozzles are arranged along the circle of $40{\sim}72$ times the diameter of single jet, the flames are not extinguished even in 200m/s. In this research, experiments were extended to the partially premixed cases to reduce both flame temperature and NOx emission. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric centre. The space between nozzles, S, the equivalence ratio, ${\phi}$, the exit velocity and the role of the jet from the centre nozzle were considered. Normally, flame was lifted and flame base was located inside the imaginary circle made by the nozzle. As nozzles went away from each other, blowout velocity increased and then decreased. The maximum blowout velocity diminished with the addition of air to the fuel stream. When the fuel and/or oxidizer were not fed through the centre nozzle, the maximum blowout velocity obtained by varying S and ${\phi}$ was around 160m/s. Optimum nozzle separation distance at which peak blowout velocity obtained also decreased with ${\phi}$ decrease. Flame base became leaner as approaching to the blowout. It seemed that lots of air was supplied to the flame stabilizing region by the entrainment and partially premixing. To approve this idea and to enhance the blowout velocity, fuel was supplied to the centre region. With the small amount of fuel through the centre nozzle, partially premixed flame could be sustained till sonic velocities. It seemed that the stabilizing mechanism in partially premixed interacting flame was different from that of non-premixed case because one was stabilized by the fuel supply through the centre nozzle but the other destabilized.