• 제목/요약/키워드: jet pressure

검색결과 1,023건 처리시간 0.031초

충돌형 분사기의 동특성 실험연구 (Experimental Study on Dynamic Characteristics of an Impinging Jet Injector)

  • 김지욱;정연재;이인규;윤영빈
    • 한국추진공학회지
    • /
    • 제17권5호
    • /
    • pp.86-94
    • /
    • 2013
  • 로켓의 연소불안정과 관련되어 분사기의 동특성을 연구하는 일은 중요하다. 와류형 분사기의 동특성에 대해서는 많은 연구가 이루어졌지만 충돌형 분사기의 동특성에 대해서는 알려진 바가 거의 없다. 따라서 본 연구에서는 충돌형 분사기의 동특성을 규명하기 위해 이에 관한 실험을 수행하였으며 동적거동을 생성시키기 위해 특별히 제작된 압력섭동기(mechanical pulsator)가 사용되었다. 가진주파수와 매니폴드 압력의 여러 조건 하에서 게인(gain)과 위상차(phase difference)를 분석하였고 주파수는 5, 10, 15 Hz의 낮은 영역에 맞춰졌다. 제트 속도를 결정하기 위한 방법에 대해 논의하였으며 실험과정 중에 나타난 특정현상이 클라이스트론(Klystron) 효과와 관련이 있는 것으로 판단되어 이에 대해 고려하였다.

Gas-Jet-assisted Glow Discharge에서 전류, 가스 흐름 속도, 압력에 따른 영향 연구 (Current, flow rate and pressure effects in a Gas-Jet-assisted Glow Discharge source)

  • 이계호;김동수;김은희;강성식;박민춘;송혜란;김하석;김효진
    • 분석과학
    • /
    • 제7권4호
    • /
    • pp.483-492
    • /
    • 1994
  • Glow Discharge를 이용한 고체 시료의 극미량 원소분석은 흡광, 방출, 형광 그리고 질량 분석 방법들이 특히 금속 시료들의 분석을 위해 많이 연구되어지고 있다. 본 연구에서는 자체 제작한 Gas-Jet-assisted Glow Discharge(GJGD)를 이용하여 각 실험변수에 따른 영향을 비교하여 보았다. 제작한 글로우 방전의 특성화 실험에 사용한 실험 변수로는 전류, 방전 가스의 흐름 속도, 압력 등이었고 시료는 황동을 사용하였다. 시료의 주원소인 구리(Cu)와 아연(Zn)의 방출선세기와 방전가스인 아르곤(Ar)의 상대적인 세기를 비교하여 보았는데, 대체적으로 전류의 증가는 튕겨나옴(Sputtering) 현상을 촉진시켜 방출선의 세기가 증가하였고 가스 흐름 속도는 플라즈마 속으로의 수송과 확산에 관여하여 증가될수록 방출선의 세기를 감소시켰다. 글로우 방전 내의 압력의 증가는 튕겨나옴 현상을 감소시킴과 더불어 시료 표면으로의 재부착을 증가시켜 방출선의 세기가 급격히 감소함을 보여 주었다.

  • PDF

공기분사가 오일미스트 윤활 시스템용 비접촉 시일의 성능 향상에 미치는 영향 (Air Jet Effect on Performance Improvement of Non-Contact Type Seals for Oil Mist Lubrication Systems)

  • 나병철;전경진;한동철
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2159-2166
    • /
    • 2000
  • Recently, high performance machining center requires special type of sealing mechanism that prevent a leakage of oil jet or oil mist lubrication system. Sealing of oil-air mixture plays important r oles to have an enhanced lubrication for performance machining center. Current work emphasizes on investigations of the air jet effect on the protective collar type labyrinth seal. To improve sealing capabilities of conventional labyrinth seals, air jet is injected against the leakage flow. In this study, an adapted model is introduced to improve sealing capability of conventional non-contact type seals. It has a combined geometry of a protective collar type and an air jet type. Both of a numerical analysis by CFD (Computational Fluid Dynamics) and experimental measurements are carried out to verify sealing improvement. The sealing effects of the leakage clearance and the air jet magnitude aic studied in various parameters. Gas or liquid has been used as a working fluid for most of nori-contact types seals including the labyrinth seal. However, it is more reasonable to regard two-phase flows because oil mist or oil jet are used for high performance spindle's lubrication. In this study, working fluid is regarded as two phases that are mixed flow of oil and air phase. Both of turbulence and compressible flow model are also introduced in a CFD analysis to represent an isentropic process. Estimation of non-leaking property is determined by amount of pressure drop in the leakage path. Results of pressure drop in the experiment match reasonably to those of the simulation by introducing a flow coefficient. Effect of the sealing improvement is explained as decreasing of leakage clearance by air jetting. Thus, sealing effect is improved by amount of air jetting even though clearance becomes larger

Prediction of Critical Reynolds Number in Stability Curve of Liquid Jet (II)

  • Lim, S.B.;So, J.D.;No, S.Y.
    • 한국분무공학회지
    • /
    • 제4권2호
    • /
    • pp.47-52
    • /
    • 1999
  • The prediction of the critical Reynolds number in the stability curie of liquid jet was mainly analyzed by the empirical correlations and the experimental data through the literature. The factors affecting the critical Reynolds number include Ohnesorge number, nozzle length-diameter ratio, ambient pressure and nozzle inlet type. The nozzle inlet type was divided into two groups according to the dependence of the critical Reynolds number on the length-to-diameter ratio of nozzle. The empirical correlations for the critical Reynolds number as a function of above factors mentioned are newly proposed.

  • PDF

워터 제트내 유동장에 관한 수치해석 연구 (A Numerical Study on Flow in a Water Jet)

  • 김일수;박창언;김대호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.27-32
    • /
    • 1998
  • This paper presents the development of a two-dimensional model for investigating the fluid flow in water jet and calculating the velocity and pressure distributions. The mathematical formulation as a standard k-$\epsilon$ model was solved employing a general thermofluid-mechanics computer program, PHOENICS code, which is based on the Semi-Implicit Method Pressure Linked Equations(SIMPLE) algorithm. The developed code was applied to water jet design to determine the nozzle size, and investigated the effect of the change of nozzle location. Calculated results showed that the flow pattern is not changed as the change of nozzle location.

  • PDF

유연성 선형 성형작약 개발에 관한 연구 (The Research on Development of Flexible Linear Shaped Charge)

  • 박병찬;장일호;이우진;전진철
    • 한국군사과학기술학회지
    • /
    • 제12권3호
    • /
    • pp.378-387
    • /
    • 2009
  • The shaped charge consists of the cast or pressed explosive and the metal liner. The pressure formed in detonation wave is so high that the liner is collapsed and the jet of high temperature, pressure and velocity is produced. The jet penetrates the target. In this paper, the simulation for optimization of flexible linear shaped charge(FLSC) was carried out by AUTODYNE program. Based on the results of simulation, we made a prototype of FLSC and evaluated penetration performance, flexibility and its application. The test result of prototype was compared with that of simulation.

Atomize법에 의한 용융소재의 고효율 미세화에 관한 연구(제2보 : 이젝터의 원리를 이용한 액체노즐의 액체공급 및 액막생성 기구와 특성) (A Study on the High-Efficiency Atomisation Molten Materials (PART 2 : A Study on the Mechanism of Liquid Supplying and Film Formation by Applying the Ejector Principle))

  • 오재건;조일영
    • 한국분무공학회지
    • /
    • 제3권2호
    • /
    • pp.14-23
    • /
    • 1998
  • The negative pressure as much as 10's mmHg is demanded at nozzle inside, in case of atomizing the large density molten materials. by conventional air jet nozzle. In this study, suction type fluid nozzle is designed by applying the ejector principle in order to clarify the air flow of nozzle inside, mechanism of liquid suction and liquid film formation. The results of this experimental study areas follows. Suction force of liquid is magnified by using liquid nozzle, and it is able to supply the liquid stable. Negative pressure at nozzle inside is varied by throttle angle of liquid nozzle, position and outer diameter of air jet nozzle, and have a influence on liquid suction quantity and liquid film formation.

  • PDF

고차고해상도 수치기법을 이용한 초음속 제트 screech tone의 axisymmetric mode 해석 (NUMERICAL ANALYSIS OF AXISYMMETIC SCREECH TONE FROM SUPERSONIC JET USING HIGH-ORDER HIGH-RESOLUTION COMPACT SCHEME)

  • 이인철;이덕주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.56-59
    • /
    • 2007
  • The screech tone of an underexpanded jet is numerically calculated without any specific modeling for the screech tone itself. A fourth-order optimized compact scheme and fourth-order Runge-Kutta method are used to solve the 2D axisymmetric Euler equation. The Fourier transform of pressure signal at upstream shows the directivity pattern of the screech tone very clearly. Pressure signal is shown to observe the generation of the screech tone. Most importantly, we can simulate the axisymmetric mode change of the screech tone very precisely with the proposed method. It can be concluded that the basic phenomenon of the screech tone including its frequency can be calculated and its mode change can be simulated with inviscid Euler equations.

  • PDF

초음속 마이크로 제트 유동에 관한 기초적 연구 (A Fundamental Study of the Supersonic Microjet)

  • 정미선;김현섭;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.622-627
    • /
    • 2001
  • Microjet flows are often encountered in many industrial applications of micro-electro-mechanical systems as well as in medical engineering fields such as a transdermal drug delivery system for needle-free injection of drugs into the skin. The Reynolds numbers of such microjets are usually several orders of magnitude below those of larger-scale jets. The supersonic microjet physics with these low Reynolds numbers are not yet understood to date. Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed to obtain both the under- and over-expanded flows at the exit of the micronozzle. Sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results, two microjets are discussed in terms of total pressure, jet decay and supersonic core length.

  • PDF

고온고압 세라믹 여과재 탈진 과정의 유동 해석 (Analysis for the Pulse-Jet Cleaning Flow of a Hot Gas Ceramic-Filter Element)

  • 박인욱;류제형;최도형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.110-115
    • /
    • 1998
  • An axisymmetric Navier-Stokes procedure has been developed to analyze the pulse jet flow in a ceramic filter unit for the dust dislodging process. Using Baldwin-Lomax turbulence model as a closure relationship, the SIAF(Scalar Implicit Approximate Factorization) algorithm together with the ${\delta}^k-Correction$ iterative time marching scheme is adopted to solve the unsteady compressible Navier-Stokes equations. After some validation tests, the code has been applied to solve the pulse jet flow and examine the effects of geometry and reservoir pressure condition on the pressure level inside the filter unit. To avoid dealing with the uncertainty of such factors as the cohesion of the collected dust and the adhesion of the dust to the medium and also to simplify the analysis, the filter wall is assumed to be impermeable. The results for various test cases are presented.

  • PDF