• Title/Summary/Keyword: iterative detection

Search Result 209, Processing Time 0.028 seconds

Accurate Detection of a Defective Area by Adopting a Divide and Conquer Strategy in Infrared Thermal Imaging Measurement

  • Jiangfei, Wang;Lihua, Yuan;Zhengguang, Zhu;Mingyuan, Yuan
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1644-1649
    • /
    • 2018
  • Aiming at infrared thermal images with different buried depth defects, we study a variety of image segmentation algorithms based on the threshold to develop global search ability and the ability to find the defect area accurately. Firstly, the iterative thresholding method, the maximum entropy method, the minimum error method, the Ostu method and the minimum skewness method are applied to image segmentation of the same infrared thermal image. The study shows that the maximum entropy method and the minimum error method have strong global search capability and can simultaneously extract defects at different depths. However none of these five methods can accurately calculate the defect area at different depths. In order to solve this problem, we put forward a strategy of "divide and conquer". The infrared thermal image is divided into several local thermal maps, with each map containing only one defect, and the defect area is calculated after local image processing of the different buried defects one by one. The results show that, under the "divide and conquer" strategy, the iterative threshold method and the Ostu method have the advantage of high precision and can accurately extract the area of different defects at different depths, with an error of less than 5%.

Pulse pile-up correction by auto-regression on linear operations (ARLO) method: A comparison with integration-based algorithms

  • Mohammad-Reza Mohammadian-Behbahani
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3904-3913
    • /
    • 2024
  • Radiation detection at high count rate suffers from pulse pile-up, where the counting data and energy information of the system are affected by the overlapping of the system output pulses. There exist various pile-up correction strategies to recover the true information of the pulses, among which pulse-tail extrapolation is a well-known method focused on in this study. Present work aims to use a mono-exponential model for extrapolating the pileup-distorted trailing edge of a pulse, to provide a reference line for calculating the true amplitude of its subsequent overlapping pulse. To this goal, the auto-regression on linear operations (ARLO) method is examined and compared with two integration-based methods (the Foss and the Matheson methods), as well as the non-linear least squares (NLS) method. Despite a higher sensitivity to noise, the ARLO method was able to provide a simple, non-iterative solution with a performance over 400 times faster than the NLS algorithm, according to the analysis of a high count rate set of experimental pulses from a NaI(Tl) detection system. Foss and Matheson methods also provided solutions reasonably faster than NLS (but not surpassing ARLO), performing exactly the same as each other with results very close to NLS, benefiting from their non-iterative nature.

Adaptive Random Testing through Iterative Partitioning with Enlarged Input Domain (입력 도메인 확장을 이용한 반복 분할 기반의 적응적 랜덤 테스팅 기법)

  • Shin, Seung-Hun;Park, Seung-Kyu
    • The KIPS Transactions:PartD
    • /
    • v.15D no.4
    • /
    • pp.531-540
    • /
    • 2008
  • An Adaptive Random Testing(ART) is one of test case generation algorithms, which was designed to get better performance in terms of fault-detection capability than that of Random Testing(RT) algorithm by locating test cases in evenly spreaded area. Two ART algorithms, such as Distance-based ART(D-ART) and Restricted Random Testing(RRT), had been indicated that they have significant drawbacks in computations, i.e., consuming quadratic order of runtime. To reduce the amount of computations of D-ART and RRT, iterative partitioning of input domain strategy was proposed. They achieved, to some extent, the moderate computation cost with relatively high performance of fault detection. Those algorithms, however, have yet the patterns of non-uniform distribution in test cases, which obstructs the scalability. In this paper we analyze the distribution of test cases in an iterative partitioning strategy, and propose a new method of input domain enlargement which makes the test cases get much evenly distributed. The simulation results show that the proposed one has about 3 percent of improvement in terms of mean relative F-measure for 2-dimension input domain, and shows 10 percent improvement for 3-dimension space.

QR Decomposition Based Sequential Belief Propagation Detection Scheme for MIMO Systems (MIMO 시스템을 위한 QR 분해 기반 순차적 신뢰 전파 검출 기법)

  • Park, Sangjoon;Choi, Sooyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1725-1727
    • /
    • 2015
  • In this letter, a QR decomposition based sequential BP detection scheme is proposed for MIMO systems. The proposed scheme performs the sequential updates from the observation node having the smallest degree among all the observation nodes. Our simulation results verify that the proposed scheme achieves an improved error performance with a significantly accelerated detection convergence speed compared to the conventional schemes.

An Improved Iterative Procedure for Outlier Detection in Time Series (시계열 이상치 탐지를 위한 개선된 반복적 절차)

  • Bui, Anh Tuan;Jun, Chi-Hyuck
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.1
    • /
    • pp.17-24
    • /
    • 2012
  • We address some potential problems with the existing procedures of outlier detection in time series. Also we propose modifications in estimating model parameters and outlier effects in order to reduce the number of tests and to increase the detection accuracy. Experiments with some artificial data sets show that the proposed procedure significantly reduces the number of tests and enhances the accuracy of estimated parameters as well as the detection power.

Fault Detection of the Cylindrical Plunge Grinding Process by Using the Parameters of AE Signals

  • Kwak, Jae-Seob;Song, Ji-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.773-781
    • /
    • 2000
  • The focus of this study is the development of a credible fault detection system of the cylindrical plunge grinding process. The acoustic emission (AE) signals generated during machining were analyzed to determine the relationship between grinding-related faults and characteristics of changes in signals. Furthermore, a neural network, which has excellent ability in pattern classification, was applied to the diagnosis system. The neural network was optimized with a momentum coefficient, a learning rate, and a structure of the hidden layer in the iterative learning process. The success rates of fault detection were verified.

  • PDF

An iterative method for damage identification of skeletal structures utilizing biconjugate gradient method and reduction of search space

  • Sotoudehnia, Ebrahim;Shahabian, Farzad;Sani, Ahmad Aftabi
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.45-60
    • /
    • 2019
  • This paper is devoted to proposing a new approach for damage detection of structures. In this technique, the biconjugate gradient method (BCG) is employed. To remedy the noise effects, a new preconditioning algorithm is applied. The proposed preconditioner matrix significantly reduces the condition number of the system. Moreover, based on the characteristics of the damage vector, a new direct search algorithm is employed to increase the efficiency of the suggested damage detection scheme by reducing the number of unknowns. To corroborate the high efficiency and capability of the presented strategy, it is applied for estimating the severity and location of damage in the well-known 31-member and 52-member trusses. For damage detection of these trusses, the time history responses are measured by a limited number of sensors. The results of numerical examples reveal high accuracy and robustness of the proposed method.

Damage detection using finite element model updating with an improved optimization algorithm

  • Xu, Yalan;Qian, Yu;Song, Gangbing;Guo, Kongming
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.191-208
    • /
    • 2015
  • The sensitivity-based finite element model updating method has received increasing attention in damage detection of structures based on measured modal parameters. Finding an optimization technique with high efficiency and fast convergence is one of the key issues for model updating-based damage detection. A new simple and computationally efficient optimization algorithm is proposed and applied to damage detection by using finite element model updating. The proposed method combines the Gauss-Newton method with region truncation of each iterative step, in which not only the constraints are introduced instead of penalty functions, but also the searching steps are restricted in a controlled region. The developed algorithm is illustrated by a numerically simulated 25-bar truss structure, and the results have been compared and verified with those obtained from the trust region method. In order to investigate the reliability of the proposed method in damage detection of structures, the influence of the uncertainties coming from measured modal parameters on the statistical characteristics of detection result is investigated by Monte-Carlo simulation, and the probability of damage detection is estimated using the probabilistic method.

Study of Target Tracking Algorithm using iterative Joint Integrated Probabilistic Data Association in Low SNR Multi-Target Environments (낮은 SNR 다중 표적 환경에서의 iterative Joint Integrated Probabilistic Data Association을 이용한 표적추적 알고리즘 연구)

  • Kim, Hyung-June;Song, Taek-Lyul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.204-212
    • /
    • 2020
  • For general target tracking works by receiving a set of measurements from sensor. However, if the SNR(Signal to Noise Ratio) is low due to small RCS(Radar Cross Section), caused by remote small targets, the target's information can be lost during signal processing. TBD(Track Before Detect) is an algorithm that performs target tracking without threshold for detection. That is, all sensor data is sent to the tracking system, which prevents the loss of the target's information by thresholding the signal intensity. On the other hand, using all sensor data inevitably leads to computational problems that can severely limit the application. In this paper, we propose an iterative Joint Integrated Probabilistic Data Association as a practical target tracking technique suitable for a low SNR multi-target environment with real time operation capability, and verify its performance through simulation studies.

An Improved Defect Detection Algorithm of Jean Fabric Based on Optimized Gabor Filter

  • Ma, Shuangbao;Liu, Wen;You, Changli;Jia, Shulin;Wu, Yurong
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1008-1014
    • /
    • 2020
  • Aiming at the defect detection quality of denim fabric, this paper designs an improved algorithm based on the optimized Gabor filter. Firstly, we propose an improved defect detection algorithm of jean fabric based on the maximum two-dimensional image entropy and the loss evaluation function. Secondly, 24 Gabor filter banks with 4 scales and 6 directions are created and the optimal filter is selected from the filter banks by the one-dimensional image entropy algorithm and the two-dimensional image entropy algorithm respectively. Thirdly, these two optimized Gabor filters are compared to realize the common defect detection of denim fabric, such as normal texture, miss of weft, hole and oil stain. The results show that the improved algorithm has better detection effect on common defects of denim fabrics and the average detection rate is more than 91.25%.