• Title/Summary/Keyword: itaconic

Search Result 46, Processing Time 0.035 seconds

Fungal Fermentation of Lignocellulosic Biomass for Itaconic and Fumaric Acid Production

  • Jimenez-Quero, A.;Pollet, E.;Zhao, M.;Marchioni, E.;Averous, L.;Phalip, V.
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • The production of high-value chemicals from natural resources as an alternative for petroleum-based products is currently expanding in parallel with biorefinery. The use of lignocellulosic biomass as raw material is promising to achieve economic and environmental sustainability. Filamentous fungi, particularly Aspergillus species, are already used industrially to produce organic acid as well as many enzymes. The production of lignocellulose-degrading enzymes opens the possibility for direct fungal fermentation towards organic acids such as itaconic acid (IA) and fumaric acid (FA). These acids have wide-range applications and potentially addressable markets as platform chemicals. However, current technologies for the production of these compounds are mostly based on submerged fermentation. This work showed the capacity of two Aspergillus species (A. terreus and A. oryzae) to yield both acids by solid-state fermentation and simultaneous saccharification and fermentation. FA was optimally produced at by A. oryzae in simultaneous saccharification and fermentation (0.54 mg/g wheat bran). The yield of 0.11 mg IA/g biomass by A. oryzae is the highest reported in the literature for simultaneous solid-state fermentation without sugar supplements.

Effects of comonomer with carboxylic group on stabilization of high molecular weight polyacrylonitrile nanofibrous copolymers

  • Lei, Danyun;Devarayan, Kesavan;Li, Xiang-Dan;Choi, Woong-Ki;Seo, Min-Kang;Kim, Byoung-Suhk
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.290-294
    • /
    • 2014
  • New precursors, poly(acrylonitrile-co-crotonic acid) (poly(AN-CA)) and poly(acrylonitrile-co-itaconic acid-co-crotonic acid) (poly(AN-IA-CA)) copolymers, for the preparation of carbon fibers, were explored in this study. The effects of comonomers with acidic groups, such as crotonic acid (CA) and/or itaconic acid (IA), on the stabilization of nanofibrous polyacrylonitrile (PAN) copolymers were studied. The extent of stabilization, evaluated by Fourier transform infrared spectroscopy, revealed that the CA comonomer could retard/control the stabilization rate of PAN, in contrast to the IA comonomer, which accelerated the stabilization process. Moreover, the synthesized PAN copolymers containing CA possessed higher Mv than those of the IA copolymers and also showed outstanding dimension stability of nanofibers during the stabilization, which may be a useful property for improving the dimensional stability of polymer composites during manufacturing.

High Throughput Screening for Searching a New Inhibitors of Acetolactate Synthase (Acetolactate synthase에 대한 고효율 활성 측정방법 및 신규 저해제 탐색)

  • Park, S.H.;Lee, K.H.;Choi, J.S.;Pyon, J.Y.;Cho, K.Y.;Hwang, I.T.
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.3
    • /
    • pp.41-46
    • /
    • 2001
  • This study was conducted to develop a high throughput system for screening acetolactate synthase(ALS) inhibitors, and to detect basic mother molecules for developing new novel herbicide candidates. The high throughput screening (HTS) method using 96-well plate and microplate reader was developed. This method is 8 times more effective than basic technique in one cycle per person. Futhermore, considering for less than 1/10 volume of materials required for ALS test and enzyme kinetics with 16 times faster speed compared to those of former procedure, this HTS method has more than 100 times higher efficacy than basic system in a consecutive procedure. We discovered 11 new ALS inhibitors such as 2-oxoglutaric acid, aminooxyacetic acid, azelaic acid, citric acid, cyanuric fluoride, itaconic acid, malonic acid, niclosamide, oxalic acid, glyoxylic acid, and suramin from 107 commercial plant-specific inhibitors using this technique. We hope these results might be useful to discover lead compounds for developing new novel herbicide candidate.

  • PDF

Biosafety of the New Soft Contact Lens Materials in the Fibroblast L-929 Cell Line (흰쥐의 섬유아세포 L-929를 이용한 새로운 Soft Contact Lens 소재의 생물안전성 검증)

  • You, Young-Hyun;Nam, Joo-Hyeung;Kim, Bieong-Kil;Kim, Soon-Bok;Moon, Ik-Jae;Kim, Jong-Pil;Seu, Young-Bae
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.1
    • /
    • pp.75-79
    • /
    • 2009
  • In this study, we polymerized new materials for soft contact lens using HEMA (2-hydroxyethyl methacrylate) which is the based-monomer of soft contact lens, EGDMA (ethylene glycol dimethacrylate) as cross linkage agent, and the new additives of monoester or di-ester derived from itaconic acid commercially produced by the fermentation of Asp. itaconicus. New polymer materials for soft contact lens were synthesized with the mixture of HEMA and mono- or diester at different ratios and presented to a good water content and oxygen transmissibility (Dk/L) values. In case of polymerization with HEMA and mono-ester (15%), the water content and oxygen transmissibility of contact lens were found to be good values at 57.6% and 28.5 Dk respectively. The mixture of HEMA and mono-ester is more excellent than HEMA/di-ester in the water content and oxygen transmissibility. The toxicity of new contact lens materials were confirmed in the fibroblast L-929 cell line using a agar overlay test and a growth inhibition test with the extract solution of contact lens.

Preparation and Ion-Conducting Properties of New Double Comb-like Acrylonitrile Copolymers Containing Itaconate Units (이타코네이트 단위를 포함하는 새로운 이중 측쇄 아크릴로니트릴 공중합체의 제조 및 이온전도 특성 조사)

  • Lee, Chil-Won;Seol, Wan-Ho;Choi, Byung-Ku;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.602-607
    • /
    • 2001
  • Bis(2-methoxyethyl)itaconate (bis(ME)I) was prepared for a new gel electrolyte containing double comb-like itaconate unit by esterification reaction of 2-methoxyethanol with itaconic acid. The copolymers were composed of AN/bis(ME)I = 9/1 ~ 1/1. The optimum mechanical properties and conductivity were obtained from the composition of AN/bis(ME)I = 5/1 and 6/1(25 ~ 35 wt%), LiClO4$_4$(15 wt%) and plasticizer (EC/PC = 1/1) (40 ~ 50 wt%). They showed a tough film and maintained a mechanical stability as a free standing film. The plasticized polymer gel electrolytes obtained from them showed ion conductivity of 8.12 ${\times}$ 10$_{-4}$ ~ 1.87 ${\times}$ 10$_{-3}$ S/cm. The maximum conductivity value obtained from our study was one order of magnitude higher than that of other PEO-based polymer electrolyte at ambient temperature.

  • PDF

Enhanced Production of Itaconic Acid through Development of Transformed Fungal Strains of Aspergillus terreus

  • Shin, Woo-Shik;Park, Boonyoung;Lee, Dohoon;Oh, Min-Kyu;Chun, Gie-Taek;Kim, Sangyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.306-315
    • /
    • 2017
  • Metabolic engineering with a high-yielding mutant, A. terreus AN37, was performed to enhance the production of itaconic acid (IA). Reportedly, the gene cluster for IA biosynthesis is composed of four genes: reg (regulator), mtt (mitochondrial transporter), cad (cis-aconitate decarboxylase), and mfs (membrane transporter). By overexpressing each gene of the IA gene cluster in A. terreus AN37 transformed by the restriction enzyme-mediated integration method, several transformants showing high productivity of IA were successfully obtained. One of the AN37/cad transformants could produce a very high amount of IA (75 g/l) in shake-flask cultivations, showing an average of 5% higher IA titer compared with the high-yielding control strain. Notably, in the case of the mfs transformants, a maximal increase of 18.3% in IA production was observed relative to the control strain under the identical fermentation conditions. Meanwhile, the overexpression of reg and mtt genes showed no significant improvements in IA production. In summary, the overexpressed cis-aconitate decarboxylase (CAD) and putative membrane transporter (MFS) appeared to have positive influences on the enhanced IA productivity of the respective transformant. The maximal increases of 13.6~18.3% in IA productivity of the transformed strains should be noted, since the parallel mother strain used in this study is indeed a very high-performance mutant that has been obtained through intensive rational screening programs in our laboratory.

Enhancing the Absorption Properties of Biomass-based Superabsorbent Terpolymer

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.249-256
    • /
    • 2020
  • Superabsorbent polymers (SAPs) can absorb and retain ten to thousand times their dry mass of water because of their three-dimensional hydrophilic structures. Conventional SAPs are mainly composed of poly(acrylic acid sodium salt) derived from petrochemicals. The present work is aimed at limiting the use of the petrochemical component by replacing it with a biomass-based material. First, the core-SAP was prepared via the terpolymerization of itaconic acid, vinylsulfonic acid, and cellulose, and the optimum conditions in terms of material input ratio were determined. Following this, the core-SAP was surface-crosslinked by esterification with butane diol to improve its liquid permeability and absorbency under load (AUL). The liquid permeability was measured according to the amount of 0.9 wt.% NaCl solution passing between the swollen SAP particles under a given pressure, and the AUL was estimated from the weight of this solution absorbed under 0.3 psi pressure.

Comparison of Physicochemical Characteristics of Traditional and Commercial Kochujang during Fermentation (재래식과 공장산 고추장의 이화학적 특성 비교)

  • Kim, Young-Soo;Kwon, Dong-Jin;Oh, Hoon-Il;Kang, Tong-Sam
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.12-17
    • /
    • 1994
  • Physicochemical characteristics of traditional kochujang fermented for 6 months and commercial kochujang were compared. Tested kochujang included 18 kinds of Sunchang kochujang prepared with glutinous rice, 10 kinds of Boeun kochujang prepared with barley and 17 kinds of Sachun kochujang prepared with wheat, and 10 kinds of commercial kochujang. Major free sugar was found to be glucose both in traditional and commercial kochujang. Fructose, maltose, and sucrose were also detected in small amounts. The contents of free sugars in traditional kochujang was approximately one fourth of those presented in commercial kochujang. Commercial kochujang showed the highest level of total free amino acids followed in decreasing order by Sachun, Sunchang, and Boeun kochujang. The most abundant free amino acid was serine in Sunchang kochujang and aspartic acid both in Boeun and Sachun kochujang. On the other hand, glutamic acid was the most abundant amino acid in commercial kochujang. Volatile organic acids in various kochujang were determined and acetic, propionic, butyric, and 3-methyl butanoic acids were found in traditional kochujang. However, 3-methyl butanoic arid was not found in commercial kochujang. The most abundant volatile acid was acetic acid in both tradtional and commercial kochujang. Analysis of non-volatile organic acids showed that large amounts of lactic, oxalic, and succinic acids were found in traditional and commercial kochujang. In addition to these, small amounts of itaconic, malic, malonic, and pyroglutamic acids were found in commercial kochujang.

  • PDF

The Dispersibility and Adsorption Behaviour of Cement Paste with Molecular Structures of Polycarboxylates (폴리카복실레이트 분자 구조에 따른 시멘트페이스트의 분산 및 흡착 특성 연구)

  • Shin, Jin-Yong;Hong, Ji-Sook;Suh, Jeong-Kwon;Lee, Young-Seok;Hwang, Eui-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.489-496
    • /
    • 2006
  • Graft copolymerized polycarboxylate(PC)-type superplasticizers which have carboxylic acid with $\pi$ bond among the molecular structure and polyethyleneglycol methyl ether methacrylate(PMEM) were synthesized by free radical reaction. To investigate their chemical structures and molecular weights, PCs were analyzed by FT-IR(fourier transform spectrometer), C-NMR(nuclear magnetic resonance spectrometer) and GPC(gel permeation chromatograpy). When types of carboxylic acids(methacrylic acid, acrylic acid, maleic anhydride, and itaconic acid) and molar ratios of carboxylic acid/PMEM) were varied, adsorptive and fluid characteristics in cement paste were discussed. As the molar ratio of carboxylic acid/PMEM) was higher, amount adsorbed on the cement particles and the fluidity of cement paste by mini-slump spread testing method were increased. When main chain of PC was methacrylic acid, a larger amount was adsorbed on the cement particles. PCs with acrylic acid as main chain showed higher dispersing power. However, it was confirmed that PCs with dicarboxylic acids(maleic anhydride, itaconic acid) didn't have good adsorption and dispersibility.

Substitution Effect of Sorbitol for Sugar on the Quality Stability of Yu Ja Cheong(Citron product) (솔비톨의 당대체효과에 의한 유자청의 품질안정성에 관한연구)

  • 차용준;이상민;안병주;송능숙;전수진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.1
    • /
    • pp.13-20
    • /
    • 1990
  • Yu Ja cheong(Citron product) one of the traditional drinks was processed by a modified method to improve the quality,. Sugar(38%) and sorbitol(12%) were added as partially substi-tuted sugar and experimented about quality stability during storage at 20$\pm$2$^{\circ}C$ comparing with conventional 50% sugar added product. Chemical compositions of the acidity 40. 46mg% total Vitamin and 28.5mg% amino-N and pH was 3.7 During the storage pH reducing sugar and amino-N contents increased slightly while total acididty decreased slightly and reduced vitamin C occupied most part of total vitamin C after proessing was converted to oxidized vitamin C greatly at 70 days of storage. While L a and b values deceased in between modified one and conventional product. e value increased continually during storage {{{{ {C }_{16 { }:_{ } 0 } }}}} {{{{ {C }_{18 { }:_{ }0 } }}}} {{{{ {C}_{18 { }:_{ }1 } }}}} and {{{{ {C }_{18 { }:_{ }2 } }}}} contnts in fatty acid and citric acid itaconic acid malic acid and succinic acid in organic acid were the major componets in both products. Judging from the results of experiments during storage the quality of the modified product was compared quite well with that of vonventional one during storage.

  • PDF