Browse > Article
http://dx.doi.org/10.5714/CL.2014.15.4.290

Effects of comonomer with carboxylic group on stabilization of high molecular weight polyacrylonitrile nanofibrous copolymers  

Lei, Danyun (Departments of BIN Fusion Technology, Chonbuk National University)
Devarayan, Kesavan (Departments of BIN Fusion Technology, Chonbuk National University)
Li, Xiang-Dan (Key Laboratory of Catalysis and Materials Science, The State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities)
Choi, Woong-Ki (R&D Division, Korea Institute of Carbon Convergence Technology)
Seo, Min-Kang (R&D Division, Korea Institute of Carbon Convergence Technology)
Kim, Byoung-Suhk (Departments of BIN Fusion Technology, Chonbuk National University)
Publication Information
Carbon letters / v.15, no.4, 2014 , pp. 290-294 More about this Journal
Abstract
New precursors, poly(acrylonitrile-co-crotonic acid) (poly(AN-CA)) and poly(acrylonitrile-co-itaconic acid-co-crotonic acid) (poly(AN-IA-CA)) copolymers, for the preparation of carbon fibers, were explored in this study. The effects of comonomers with acidic groups, such as crotonic acid (CA) and/or itaconic acid (IA), on the stabilization of nanofibrous polyacrylonitrile (PAN) copolymers were studied. The extent of stabilization, evaluated by Fourier transform infrared spectroscopy, revealed that the CA comonomer could retard/control the stabilization rate of PAN, in contrast to the IA comonomer, which accelerated the stabilization process. Moreover, the synthesized PAN copolymers containing CA possessed higher Mv than those of the IA copolymers and also showed outstanding dimension stability of nanofibers during the stabilization, which may be a useful property for improving the dimensional stability of polymer composites during manufacturing.
Keywords
carbon nanofibers; carbon precursor; electrospinning; polyacrylonitrile;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mochida I, Yoon SH, Takano N, Fortin F, Korai Y, Yokogawa K. Microstructure of mesophase pitch-based carbon fiber and its control. Carbon, 34, 941 (1996). http://dx.doi.org/10.1016/0008-6223(95)00172-7.   DOI
2 Bhanu VA, Rangarajan P, Wiles K, Bortner M, Sankarpandian M, Godshall D, Glass TE, Banthia AK, Yang J, Wilkes G, Baird D, McGrath JE. Synthesis and characterization of acrylonitrile methyl acrylate statistical copolymers as melt processable carbon fiber precursors. Polymer, 43, 4841 (2002). http://dx.doi.org/10.1016/S0032-3861(02)00330-0.   DOI   ScienceOn
3 Rahaman MSA, Ismail AF, Mustafa A. A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab, 92, 1421 (2007). http://dx.doi.org/10.1016/j.polymdegradstab.2007.03.023.   DOI   ScienceOn
4 Shimada I, Takahagi T, Fukuhara M, Morita K, Ishitani A. FT-IR study of the stabilization reaction of polyacrylonitrile in the production of carbon fibers. J Polym Sci A, 24, 1989 (1986). http://dx.doi.org/10.1002/pola.1986.080240819.   DOI
5 Devasia R, Nair CPR, Sadhana R, Babu NS, Ninan KN. Fourier transform infrared and wide-angle X-ray diffraction studies of the thermal cyclization reactions of high-molar-mass poly(acrylonitrile-co-itaconic acid). J Appl Polym Sci, 100, 3055 (2006). http://dx.doi.org/10.1002/app.23705.   DOI
6 Ju A, Zhang K, Luo M, Ge M. Poly(acrylonitrile-co-3-ammoniumcarboxylate- 3-butenoic acid methyl ester): a better carbon fiber precursor than acrylonitrile terpolymer. J Polym Res, 21, 1 (2014). http://dx.doi.org/10.1007/s10965-014-0395-6.   DOI
7 Ouyang Q, Cheng L, Wang H, Li K. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym Degrad Stab, 93, 1415 (2008). http://dx.doi.org/10.1016/j.polymdegradstab.2008.05.021.   DOI   ScienceOn
8 Bahl OP, Manocha LM. Characterization of oxidised pan fibres. Carbon, 12, 417 (1974). http://dx.doi.org/10.1016/0008-6223(74)90007-4.   DOI   ScienceOn
9 Li W, Long D, Miyawaki J, Qiao W, Ling L, Mochida I, Yoon SH. Structural features of polyacrylonitrile-based carbon fibers. J Mater Sci, 47, 919 (2012). http://dx.doi.org/10.1007/s10853-011-5872-2.   DOI
10 Lv MY, Ge HY, Chen J. Study on the chemical structure and skincore structure of polyacrylonitrile-based fibers during stabilization. J Polym Res, 16, 513 (2009). http://dx.doi.org/10.1007/s10965-008-9254-7.   DOI
11 Zhang WX, Wang YZ, Sun CF. Characterization on oxidative stabilization of polyacrylonitrile nanofibers prepared by electrospinning. J Polym Res, 14, 467 (2007). http://dx.doi.org/10.1007/s10965-007-9130-x.   DOI   ScienceOn
12 Wangxi Z, Jie L, Gang W. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon, 41, 2805 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00391-9.   DOI   ScienceOn
13 Ko YI, Lee Y, Devarayan K, Kim BS, Hayashi T, Kim IS. Annealing effects on mechanical properties and shape memory behaviors of silicone-coated elastomeric polycaprolactone nanofiber filaments. Mater Lett, 131, 128 (2014). http://dx.doi.org/10.1016/j.matlet.2014.05.184.   DOI   ScienceOn
14 Wu M, Wang Q, Li K, Wu Y, Liu H. Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers. Polym Degrad Stab, 97, 1511 (2012). http://dx.doi.org/10.1016/j.polymdegradstab.2012.05.001.   DOI
15 Cleland RL, Stockmayer WH. An intrinsic viscosity-molecular weight relation for polyacrylonitrile. J Polym Sci, 17, 473 (1955). http://dx.doi.org/10.1002/pol.1955.120178602.   DOI
16 Liu JJ, Ge H, Wang CG. Modification of polyacrylonitrile precursors for carbon fiber via copolymerization of acrylonitrile with ammonium itaconate. J Appl Polym Sci, 102, 2175 (2006). http://dx.doi.org/10.1002/app.24256.   DOI
17 Chand S. Carbon fibers for composites. J Mater Sci, 35, 1303 (2000). http://dx.doi.org/10.1023/A:1004780301489.   DOI   ScienceOn