Browse > Article
http://dx.doi.org/10.4014/jmb.1607.07057

Fungal Fermentation of Lignocellulosic Biomass for Itaconic and Fumaric Acid Production  

Jimenez-Quero, A. (BioTeam/ICPEES-ECPM, UMR CNRS 7515, Universite de Strasbourg)
Pollet, E. (BioTeam/ICPEES-ECPM, UMR CNRS 7515, Universite de Strasbourg)
Zhao, M. (CAMBA/IPHC, UMR 7178, Faculte de Pharmacie, Universite de Strasbourg)
Marchioni, E. (CAMBA/IPHC, UMR 7178, Faculte de Pharmacie, Universite de Strasbourg)
Averous, L. (BioTeam/ICPEES-ECPM, UMR CNRS 7515, Universite de Strasbourg)
Phalip, V. (BioTeam/ICPEES-ECPM, UMR CNRS 7515, Universite de Strasbourg)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.1, 2017 , pp. 1-8 More about this Journal
Abstract
The production of high-value chemicals from natural resources as an alternative for petroleum-based products is currently expanding in parallel with biorefinery. The use of lignocellulosic biomass as raw material is promising to achieve economic and environmental sustainability. Filamentous fungi, particularly Aspergillus species, are already used industrially to produce organic acid as well as many enzymes. The production of lignocellulose-degrading enzymes opens the possibility for direct fungal fermentation towards organic acids such as itaconic acid (IA) and fumaric acid (FA). These acids have wide-range applications and potentially addressable markets as platform chemicals. However, current technologies for the production of these compounds are mostly based on submerged fermentation. This work showed the capacity of two Aspergillus species (A. terreus and A. oryzae) to yield both acids by solid-state fermentation and simultaneous saccharification and fermentation. FA was optimally produced at by A. oryzae in simultaneous saccharification and fermentation (0.54 mg/g wheat bran). The yield of 0.11 mg IA/g biomass by A. oryzae is the highest reported in the literature for simultaneous solid-state fermentation without sugar supplements.
Keywords
Lignocellulosic biomass; solid-state fermentation; submerged fermentation; Aspergillus oryzae;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 de Castro RJS, Sato HH. 2014. Production and biochemical characterization of protease from Aspergillus oryzae: an evaluation of the physical-chemical parameters using agroindustrial wastes as supports. Biocatal. Agric. Biotechnol. 3: 20-25.
2 Cao N, Xia Y, Gong CS, Tsao GT. 1997. Production of 2,3-butanediol from pretreated corn cob by Klebsiella oxytoca in the presence of fungal cellulase. Appl. Biochem. Biotechnol. 63-65: 129-139.   DOI
3 Mondala AH. 2015. Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects. J. Ind. Microbiol. Biotechnol. 42: 487-506.   DOI
4 Kromus S, Kamm B, Kamm M, Fowler P, Narodoslawsky M. 2005. Green biorefineries: the green biorefinery concept - fundamentals and potential, pp. 253-294. In Kamm B, Gruber PR, Kamm M (eds.). Biorefineries - Industrial Processes and Products. Wiley-VCH Verlag GmbH.
5 Kawaguchi H, Hasunuma T, Ogino C, Kondo A. 2016. Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr. Opin. Biotechnol. 42: 30-39.   DOI
6 Lucia LA, Argyropoulos DS, Adamopoulos L, Gaspar AR. 2006. Chemicals and energy from biomass. Can. J. Chem. 84: 960-970.   DOI
7 te Biesebeke R, Ruijter G, Rahardjo YSP, Hoogschagen MJ, Heerikhuisen M, Levin A, et al. 2002. Aspergillus oryzae in solid-state and submerged fermentations. Progress report on a multi-disciplinary project. FEMS Yeast Res. 2: 245-248.
8 Kamm B, Kamm M, Schmidt M, Hirth T, Schulze M. 2005. Lignocellulose-based chemical products and product family trees, pp. 97-149. In Kamm B, Gruber PR, Kamm M (eds.). Biorefineries - Industrial Processes and Products. Wiley-VCH Verlag GmbH.
9 Menon V, Rao M. 2012. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38: 522-550.   DOI
10 Goldberg I, Rokem JS, Pines O. 2006. Organic acids: old metabolites, new themes. J. Chem. Technol. Biotechnol. 81: 1601-1611.   DOI
11 Werpy T, Holladay J, White J. 2004. Top value added chemicals from biomass: I. results of screening for potential candidates from sugars and synthesis gas (No. 419907). DOE Scientific and Technical Information. US Department of Energy (DOE).
12 Magnuson JK, Lasure LL. 2004. Organic acid production by filamentous fungi, pp. 307-340. In Tkacz JS, Lange L (eds.). Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine. Springer, New York.
13 Okabe M, Lies D, Kanamasa S, Park EY. 2009. Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl. Microbiol. Biotechnol. 84: 597-606.   DOI
14 Sorensen HR, Pedersen S, Jorgensen CT, Meyer AS. 2007. Enzymatic hydrolysis of wheat arabinoxylan by a recombinant "minimal" enzyme cocktail containing ${\beta}$-xylosidase and novel endo-1,4-${\beta}$-xylanase and ${\alpha}$-L-arabinofuranosidase activities. Biotechnol. Prog. 23: 100-107.   DOI
15 Xu Q, Li S, Fu Y, Tai C, Huang H. 2010. Two-stage utilization of corn straw by Rhizopus oryzae for fumaric acid production. Bioresour. Technol. 101: 6262-6264.   DOI
16 de Vries RP, Visser J. 2001. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev. 65: 497-522.   DOI
17 Dwiarti L, Otsuka M, Miura S, Yaguchi M, Okabe M. 2007. Itaconic acid production using sago starch hydrolysate by Aspergillus terreus TN484-M1. Bioresour. Technol. 98: 3329-3337.   DOI
18 El-Imam AMA, Kazeem MO, Odebisi MB, Oke MA, Abidoye AO. 2013. Production of itaconic acid from Jatropha curcas seed cake by Aspergillus terreus. Not. Sci. Biol. 5: 57-61.   DOI
19 Prévot V, Lopez M, Copinet E, Duchiron F. 2013. Comparative performance of commercial and laboratory enzymatic complexes from submerged or solid-state fermentation in lignocellulosic biomass hydrolysis. Bioresour. Technol. 129: 690-693.   DOI
20 Pandey A. 2001. Solid-State Fermentation in Biotechnology: Fundamentals and Applications. Asiatech Publishers, New Delhi.
21 Holker U, Hofer M, Lenz J. 2004. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl. Microbiol. Biotechnol. 64: 175-186.   DOI
22 Ferreira JA, Mahboubi A, Lennartsson PR, Taherzadeh MJ. 2016. Waste biorefineries using filamentous ascomycetes fungi: present status and future prospects. Bioresour. Technol. 215: 334-345.   DOI
23 Begum MF, Alimon AR. 2011. Bioconversion and saccharification of some lignocellulosic wastes by Aspergillus oryzae ITCC-4857.01 for fermentable sugar production. Electron. J. Biotechnol. 14. DOI: 10.2225/vol14-issue5-fulltext-3.   DOI
24 Willke T, Vorlop K-D. 2001. Biotechnological production of itaconic acid. Appl. Microbiol. Biotechnol. 56: 289-295.   DOI
25 Hevekerl A, Kuenz A, Vorlop K-D. 2014. Filamentous fungi in microtiter plates - an easy way to optimize itaconic acid production with Aspergillus terreus. Appl. Microbiol. Biotechnol. 98: 6983-6989.   DOI
26 Okuda J, Miwa I, Maeda K, Tokui K. 1977. Rapid and sensitive, colorimetric determination of the anomers of Dglucose with D-glucose oxidase, peroxidase, and mutarotase. Carbohydr. Res. 58: 267-270.   DOI
27 Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
28 Jimenez-Quero A, Pollet E, Zhao M, Marchioni E, Averous L, Phalip V. 2016. Itaconic and fumaric acid production from biomass hydrolysates by Aspergillus strains. J. Microbiol. Biotechnol. 26: 1557-1565.   DOI
29 Miron J, Yosef E, Ben-Ghedalia D. 2001. Composition and in vitro digestibility of monosaccharide constituents of selected byproduct feeds. J. Agric. Food Chem. 49: 2322-2326.   DOI
30 Van Dyk JS, Pletschke BI. 2012. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes - factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 30: 1458-1480.   DOI
31 Hendriks ATWM, Zeeman G. 2008. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100: 10-18.
32 Viktor MJ, Rose SH, van Zyl WH, Viljoen-Bloom M. 2013. Raw starch conversion by Saccharomyces cerevisiae expressing Aspergillus tubingensis amylases. Biotechnol. Biofuels 6: 167.   DOI
33 West TP. 2008. Fumaric acid production by Rhizopus oryzae on corn distillers' grains with solubles. Res. J. Microbiol. 3: 35-40.   DOI