• Title/Summary/Keyword: isotropy

Search Result 142, Processing Time 0.028 seconds

Influence of Pillar Width on the Stability of Twin Tunnels Using Scaled Model Tests (쌍굴터널 간 이격거리가 터널 안정성에 미치는 영향에 관한 모형실험 연구)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.423-434
    • /
    • 2015
  • Scaled model tests were performed to investigate the influence of pillar width, rock strength and isotropy/anisotropy on the stability of twin tunnels. Test models had respectively different pillar widths, uniaxial compressive strengths of modelling materials and model types, where both the deformation behaviors around tunnels and the biaxial pressure data at a time of pillar cracking were analysed. The cracking pressures of the higher strength models were higher than the lower strength models, whereas the percentage of cracking pressure to uniaxial compressive strength of modelling materials showed an opposite tendency. The cracking pressures of the shallower pillar width models were lower than the thicker models, moreover the percentage of that showed a same tendency. It has been found that the pillar width was one of the main factors influencing on the stability of twin tunnels. Model types such as isotropy/anisotropy also influenced on the stability of twin tunnels. The anisotropic models showed lower values of both cracking pressures and the percentage of that than the isotropic models, where the pillar cracks of anisotropic models were generated with regard to the pre-existing joint planes.

Estimation of tensile strength and moduli of a tension-compression bi-modular rock

  • Wei, Jiong;Zhou, Jingren;Song, Jae-Joon;Chen, Yulong;Kulatilake, Pinnaduwa H.S.W.
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.349-358
    • /
    • 2021
  • The Brazilian test has been widely used to determine the indirect tensile strength of rock, concrete and other brittle materials. The basic assumption for the calculation formula of Brazilian tensile strength is that the elastic moduli of rock are the same both in tension and compression. However, the fact is that the elastic moduli in tension and compression of most rocks are different. Thus, the formula of Brazilian tensile strength under the assumption of isotropy is unreasonable. In the present study, we conducted Brazilian tests on flat disk-shaped rock specimens and attached strain gauges at the center of the disc to measure the strains of rock. A tension-compression bi-modular model is proposed to interpret the data of the Brazilian test. The relations between the principal strains, principal stresses and the ratio of the compressive modulus to tensile modulus at the disc center are established. Thus, the tensile and compressive moduli as well as the correct tensile strength can be estimated simultaneously by the new formulas. It is found that the tensile and compressive moduli obtained using these formulas were in well agreement with the values obtained from the direct tension and compression tests. The formulas deduced from the Brazilian test based on the assumption of isotropy overestimated the tensile strength and tensile modulus and underestimated the compressive modulus. This work provides a new methodology to estimate tensile strength and moduli of rock simultaneously considering tension-compression bi-modularity.

Analysis of Orthotropic Body Under Partial-Uniform Shear Load (부분(部分) 등분포(等分布) 전단하중(剪斷荷重)을 받는 이방성(異方性) 구조체(構造體)의 해석(解析))

  • Chang, Suk Yoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.1-10
    • /
    • 1984
  • This dissertation presents an exact solution for the shearing and normal stresses of an orthotropic plane body loaded by a pairtial-uniform shear load. The solution satisfies the equilibrium and compatibility equations concurrently. An Airy stress function is introduced to solve the problem related to an orthotropic half-infinite plane under a partial-uniform shear load. All the equations for orthotropy must be degenerated into the expressions for isotropy when orthotropic constants are replaced by isotropic ones. The author has evaluated all the equations of orthotropy and succeeded in obtaining exactly identical expressions to the equations of isotropy which were derived independently by means of L'hospital's rule. The analytical results of, isotropy ate compared with the simple results of other investigator. Since a concentrated shear load is a particular case of partial-uniform shear load, all the equations of partial-uniform shear load case are degenerated into the expressions for concentrated load case of isotropy and orthotropy. The formal solution is expressed in terms of closed form. The numerical results for orthotropy are evaluated for two kinds and two different orientations of the grain of wood. The type of wood considered are three-layered plywood and laminated delta wood. The distribution of normal and shearing stresses are shown in figures. It is noted that the distribution of stresses of orthctropic materials dependson the type of materials and orientations of the grain.

  • PDF

In-vivo Dose verification using MOSFET dosimeter (MOSFET 선량계를 이용한 In-vivo 선량의 확인)

  • Kang, Dae-Gyu;Lee, Kwang-Man
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.102-105
    • /
    • 2006
  • In-vivo dosimetry is an essential tool of quality assurance programs in radiotherapy. The most commonly used techniques to verify dose are thermoluminescence dosimeter (TLD) and diode detectors. Metal oxide semiconductor field-effect transistor (MOSFET) has been recently proposed for using in radiation therapy with many advantages. The reproducibility, linearity, isotropy, dose rate dependence of the MOSFET dosimeter were studied and its availability was verified. Consequently the results can be used to improve therapeutic planning procedure and minimize treatment errors in radiotherapy.

A Numerically Efficient Full Wave Analysis of Circular Resonators Microbandes Stacked Involving Multimetallisations

  • Chebbara, F.;Fortaki, T.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.314-319
    • /
    • 2015
  • The conventional geometry of a plate microstrip resonator is made up of a single metallic patch, which is printed on a monolayer dielectric substrate. Its arrangement is simple and easy to make, but it is limited in its functional abilities. Many searches have been realized to improve the bandwidth and the gain of the microstrip resonators. Among the various configurations proposed in the open literature, the stacked geometry seems to be very promising. By appropriate design, it is able to provide the operation in dual frequency mode, wide bandwidth enough and high gain. The theoretical investigations of structures composed of two stacked anti-reflection coatings, enhanced metallic coatings are available in the literature, however, for the stacked configurations involving three metallic coatings or more, not to exact or approximate analysis was conducted due to the complexity of the structure.

Evaluation of dynamical performance of 3 dimensional multi-arm robot (3차원 다중 로봇의 동적 성능 평가)

  • 김기갑;김충영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.756-759
    • /
    • 1997
  • Multi-arm cooperation robot system is required for more specific and dextrous jobs such as transferring very large or heavy objects, or grasping work piece while processing on it. There is little research on 3-dimensional multi-arm robot. Here we propose two performance indices presenting isotropy of end-effector's acceleration and velocity capabilities with constraints of joint torques, that is Isotropic Acceleration Radius [IAR] and Isotropic Velocity Radius [IVRI. Also the procedure to find 3-dimensional IAR, IVR is proposed, where available acceleration set concept is used. The case of 3-dimensional two 3 joint robot system was simulated and the distributions of IAR, IVR was studied.

  • PDF

Development of Low-Reynolds-Number Ssecond Moment Turbulence Closure by DNS Data (DNS 자료에 의한 저레이놀즈수 2차 모멘트 난류모형의 개발)

  • Sin, Jong-Geun;Choe, Yeong-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2572-2592
    • /
    • 1996
  • A low-Reynolds-number second moment turbulence closure was developed with the aid of DNS data. Model coefficients of nonlinear return to isotropy term were derived by use of Cayley-Hamilton theorem and two component turbulence limit condition as the functions of invariances of anisotropy and turbulent Reynolds number. Launder and Tselepidakis' cubic mean pressure strain model was modified to fit the predicted pressure-strain components to the DNS data. Two component turbulence limit condition was the precondition to be satisfied in developing the second moment turbulence closure for the realizable Reynolds stress prediction. But the satisfactions of Reynolds stress level and pressure-strain level of each component were compromised because the satisfaction of both levels was impossible.

Development of a coupled tendom driven robot hand

  • Choi, H.R.;Lee, Y.T.;Kim, J.H.;Chung, W.K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.185-190
    • /
    • 1993
  • The POSTECH Hand adopting coupled tendon driven technique with planar two fingers is developed. The hand is designed to emulate principal motions of the human hand which has two and three joints respectively. Its kinematic parameters are determined through a parameter optimizing technique to aim at improving the isotropy of fingertip motions with new criterion functions of design. For the control of the hand, tension and torque control algorithms are developed. Based on the virtual stiffness concept, we develop the stiffness control method of a grasped object with redundant finger mechnism and investigate experimentally.

  • PDF

Study of the Anisotropy of the Roller Compacted Concrete (RCC) for Pavement

  • Zdiri, Mustapha;Abriak, Nor-edine;Ouezdou, Mongi Ben;Neji, Jamel
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.45-49
    • /
    • 2010
  • The roller compacted concrete (RCC) is supposed to be isotropic, whereas the compaction of this material, which is achieved using the same machines used for the soil, appears only unidirectional, making the RCC an anisotropic material. In this experimental work, the influence of the phenomenon of compaction on the isotropy of the RCC is studied. This study was carried out through an evaluation of the compressive strengths and ultrasonic tests which were used for measurements of the elastic modulus and the dynamic Poisson's ratio of the RCC as well as a qualitative judgement of the RCC aspect at the hardened state. The results of this work proved the anisotropy of the RCC and they showed the sensitivity of the mechanical strengths and the elastic modulus to the compaction direction.

Engineering Characteristics of Shales due to the Angle of Bedding Planes (층리면을 고려한 셰일의 공학적 특성)

  • 김영수;서인식;허노영;이재호;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.1
    • /
    • pp.5-13
    • /
    • 2001
  • 강도 또는 변형 이방성은 층리진 최적암, 박층모양의 변성암, 균일하게 절 리가 나있는 암석에서 흔히 볼 수 있다(Amadei, 1982, 1996). 특히, 대구지역은 퇴적암의 일종인 셰일로 구성되어 층리면의 각도에 따라 역학적인 특성이 달리 산정되어져야 한다. 이에 본 연구에서는 층리면의 각도를 달리하여 시료를 성형한 후 각종 시험을 수행하였다. 그 결과 일축 압축강도는 수평면과 층리면이 이루는 각이 0$^{\circ}$, 90$^{\circ}$에서 최고 강도를, 60$^{\circ}$에서 최저 강도를 나타내었다. 또한 간접 인장시험과 점 하중시험, 탄성파시험에서는 90$^{\circ}$에서 최고값을, 0$^{\circ}$에서 최저값을 보였다. 그리고, 층리에 따른 퇴적압의 일축 압축강도를 간접 인장강도, 점하중강도와의 상관성을 분석하여 각각의 관계를 회귀분석을 통한 상관식으로 나타내었다. 추가적으로 층리에 따른 공학적특성을 정량적으로 나타내었다.

  • PDF