• Title/Summary/Keyword: isotropic plate

Search Result 227, Processing Time 0.026 seconds

Vibration Analysis of Composite Laminated Plates with Increasing Aspect Ratio by Invariant and Correction Factor (형상비 변화에 따른 불변량과 수정계수를 사용한 적층복합판의 진동해석)

  • Park, Je-Sun;Lee, Jung-Ho;Hong, Chang-Woo;Lee, Joo-Hyung
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.227-233
    • /
    • 1999
  • Simple equations which can predict "exact" values of the natural frequency of vibration for the special orthotropic laminates are presented. Many laminates with certain orientations have decreasing values of $B_{16}$ and $B_{26}$ as the number of plies increases. Such laminates, with $D_{16}=D_{26}{\rightarrow}0$, including the laminates with anti-symmetric configurations can be solved by the same equation for the special orthotropic laminates. If the quasi-isotropic constants are used, the equations for the isotropic plates can be used. Use of some coefficients cab produce "exact" value for laminates with such configurations. Natural frequencies of the plate with varying aspect ratios is presented.

  • PDF

Analysis of an Isotropic Infinite Plate with Many Collinear Multiple Cracks by the Alternating Method (다수의 직선 다중균열이 존재하는 등방성 무한판의 교호법을 이용한 해석)

  • Park, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3838-3846
    • /
    • 1996
  • A method is proposed to obtain the stress intensity factors of multiple cracks lying on many straight llnes in an infinite isotropic plate. In this mehtod, analytical solutions for collinear multiple cracks subject to surface point forces are obrained and used as Green functions. For the multiple cracks lying onmany straight lines, the equivalent crack surface tractions are obtained by using the alternating method and the stress intensity factors are calculated. By using the proposed method several useful problems are solved and discussed.

Interactions in a transversely isotropic new modified couple stress thermoelastic thick circular plate with two temperature theory

  • Parveen Lata;Harpreet Kaur
    • Coupled systems mechanics
    • /
    • v.12 no.3
    • /
    • pp.261-276
    • /
    • 2023
  • This article is an application of new modified couple stress thermoelasticity without energy dissipation in association with two-temperature theory. The upper and lower surfaces of the plate are subjected to an axisymmetric heat supply. The solution is found by using Laplace and Hankel transform techniques. The analytical expressions of displacement components, conductive temperature, stress components and couple stress are computed in transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerically simulated results are depicted graphically. The effect of two temperature is shown on the various components.

Damage Characteristics of Quasi Isotropic Composite Laminates Subjected to Low Velocity Impact (준등방성 복합적층판의 저속충격에 의한 손상특성)

  • Kim, J.H.;Jeon, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.135-141
    • /
    • 1997
  • Low velocity impact test and compressive residual strength test after impact were performed by using Hercules AS4/3501-6[45/0/-45/90]$_{2s}$ laminated plate to investigate the low velocity impact damage behavior and the post-impact strength degradation on orthotropic composite laminate plate. Due to the lateral impact losd, the load path showed "" shape according to the laminate central deflection. Damage in a laminate occurs by inclined matrix crack at the damage initiation load stage and vertical matrix crack, occurs on the outer surface. Evaluating the compressive residual strength after the low velocty impact test, it could be found that there is a transient range where the compressive residual strength drop suddenly in the initial damage which is in the matrix crack range and the initial delamination area. is in the matrix crack range and the initial delamination area.

  • PDF

Stability Analysis of Rectangular Plate with Concentrated Mass (집중질량을 갖는 장방형판의 안정해석)

  • 김일중;오숙경;이용수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.805-809
    • /
    • 2004
  • This paper is for the vibration analysis of thick plate with concentrated mass on a inhomogeneous pasternak foundation. The vibration of rectangular plate on the inhomogeneous pasternak foundation, natural frequency of this plate with Concentrated Mass are calculated A thick rectangular plate resting on a inhomogeneous pasternak foundation is isotropic, homogeneous and composite with linearly elastic material. In order to analysis plate which is supported on inhomogeneous pasternak foundation, the value of winkler foundation parameter(WFP) of centural and border zone of plate are chosen as WFP1 and WFP2 respectively. The value of WFP1 and WFP2 can be changed as 10, 10$^3$ and the value of SFP(shear foundation parameter) also be changed 5, 15 respectively.

  • PDF

The Characterization of the Resin Bonded Graphite Composite Bipolar Plate using Isotropic Graphite Powder for PEM Fuel Cell

  • Cho, Kwang-Youn;Riu, Doh-Hyung;Hui, Seung-Hun;Kim, Hong-Suk;Chung, Yoon-Jung;Lim, Yun-Soo
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.326-334
    • /
    • 2007
  • In this study, graphite composites were fabricated by warm press molding method to realize commercialization of PEM fuel cells. Graphite composites have been considered as alternative economic materials for bipolar plate of PEM fuel cells. Graphite powder that enables to provide electrical conductivity was selected as the main substance. The graphite powder was mixed with phenolic resin and the mixture was pressed using a warm press method. First of all, the graphite powder was pulverized with a ball mill for the dense packing of composite. As the ball milling time increases, the average size of particles decreases and the size distribution becomes narrow. This allows for improvement of the uniformity of graphite composite. However, the surface electrical resistivity of graphite composite increases as the ball milling time increases. It is due to that graphite particles with amorphous phase are generated on the surface due to the friction and collision of particles during pulverizing. We found that the contact electrical resistivity of graphite particles increases as the particle size decreases. The contact electrical resistivity of graphite powders was reduced due to high molding pressure by warm press molding. This leads to improvement of the mechanical properties of graphite composite. Hydrogen gas impermeability was measured with the graphite composite, showing a possibility of the application for bipolar plate in fuel cell. And, I-V curves of the graphite composite bipolar plate exhibit a similar performance to the graphite bipolar plate.

Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM

  • Narwariya, Manoj;Choudhury, Achintya;Sharma, Avadesh K.
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.113-132
    • /
    • 2018
  • This paper presents the vibration and harmonic analysis of orthotropic laminated composite plate. The response of plate is determined using Finite Element Method. The eight noded shell 281 elements are used to analyze the orthotropic plates and results are obtained so that the right choice can be made in applications such as aircrafts, rockets, missiles, etc. to reduce the vibration amplitudes. Initially the model response for orthotropic plate and harmonic response for isotropic plate is verified with the available literature. The results are in good agreement with the available literature. Numerical results for the natural frequency and harmonic response amplitude are presented. Effects of boundary conditions, thickness to width ratio and number of layers on natural frequency and harmonic response of the orthographic plates are also investigated. The natural frequency, mode shape and harmonic analysis of laminated composite plate has been determined using finite element package ANSYS.

Two-dimensional isotropic patterns for core materials in applications to sandwich structures (샌드위치 구조물 내에서의 응용과 관련된 2차원 단위 셀 형상을 지닌 심재에 대한 연구)

  • Kim, Beom-Keun;Christensen, R.M.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.130-135
    • /
    • 2007
  • The mechanical characteristics of three types of core with two-dimensional isotropic patterns-triangular, hexagonal and starcell-were studied in applications to sandwich structures. The Young's modulus and shear modulus were calculated for the three core types in the direction normal to the faces. The compressive buckling strength and shear buckling strength were calculated by modeling each cell wall of the core as a plate under compressive or shear load. To verify this model, tests were conducted on scaled specimens to measures the compressive buckling strength of each core. The bending flexibilities of the three cores were also studied. Compliances for the three cores were measured using biaxial flexural tests. The three isotropic core patterns exhibited distinct characteristics. In the direction normal to the faces, all three cores had the same stiffness. However, the starcell core exhibited high flexibility compared to the other cores, indicating potential for application to curved sandwich structures.

  • PDF

Buckling of symmetrically laminated quasi-isotropic thin rectangular plates

  • Altunsaray, Erkin;Bayer, Ismail
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.305-320
    • /
    • 2014
  • The lowest critical value of the compressive force acting in the plane of symmetrically laminated quasi-isotropic thin rectangular plates is investigated. The critical buckling loads of plates with different types of lamination and aspect ratios are parametrically calculated. Finite Differences Method (FDM) and Galerkin Method are used to solve the governing differential equation for Classical Laminated Plate Theory (CLPT). The results calculated are compared with those obtained by the software ANSYS employing Finite Elements Method (FEM). The results of Galerkin Method (GM) are closer to FEM results than those of FDM. In this study, the primary aim is to conduct a parametrical performance analysis of proper plates that is typically conducted at preliminary structural design stage of composite vessels. Non-dimensional values of critical buckling loads are also provided for practical use for designers.

Free Vibration Analysis of Thermally Buckled Quasi-Isotropic Laminated Plates with Simply Supported Edges (열하중으로 좌굴된 단순 지지 준 등방성 적층판의 자유진동 해석)

  • 신동구
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.151-158
    • /
    • 1994
  • The free vibrations of thermally buckled, simply supported, symmetrically laminated, rectangular, and quasi-isotropic plates are investigated. The nonlinear postbuckling analysis is performed by the finite element method based on the first order shear deformable plate theory with the use of von Karman type nonlinear strains and the Duhamel-Newman type constitutive law. The postbuckling solutions are used to obtain free vibration responses of buckled plates. Several numerical examples for quasi-isotropic laminated plates are considered. The effects of width-to-thickness ratios and aspect ratios on the free vibration characteristics of buckled plates are investigated.

  • PDF