Browse > Article
http://dx.doi.org/10.12989/acd.2018.3.2.113

Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM  

Narwariya, Manoj (Department of Mechanical Engineering, Sir Padampat Singhania University)
Choudhury, Achintya (Department of Mechanical Engineering, Sir Padampat Singhania University)
Sharma, Avadesh K. (Rajkiya Engineering College)
Publication Information
Advances in Computational Design / v.3, no.2, 2018 , pp. 113-132 More about this Journal
Abstract
This paper presents the vibration and harmonic analysis of orthotropic laminated composite plate. The response of plate is determined using Finite Element Method. The eight noded shell 281 elements are used to analyze the orthotropic plates and results are obtained so that the right choice can be made in applications such as aircrafts, rockets, missiles, etc. to reduce the vibration amplitudes. Initially the model response for orthotropic plate and harmonic response for isotropic plate is verified with the available literature. The results are in good agreement with the available literature. Numerical results for the natural frequency and harmonic response amplitude are presented. Effects of boundary conditions, thickness to width ratio and number of layers on natural frequency and harmonic response of the orthographic plates are also investigated. The natural frequency, mode shape and harmonic analysis of laminated composite plate has been determined using finite element package ANSYS.
Keywords
finite element method; orthotropic plate; free vibration; harmonic response;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aagaah, M.R., Mahinfalah, M. and Jazar, G.N. (2006), "Natural frequencies of laminated composite plates using third order shear deformation theory", Comput. Struct., 72(3), 273-279   DOI
2 Andakhshideh, A., Maleki, S. and Aghdam, M.M. (2010), "Non-linear bending analysis of laminated sector plates using generalized differential quadrature", Comput. Struct., 92(9), 2258-2264.   DOI
3 Asadi, E. and Fariborz, S.J. (2012), "Free vibration of composite plates with mixed boundary conditions based on higher-order shear deformation theory", Arch. Appl. Mech., 82(6), 755-766.   DOI
4 Ashour, A.S. (2004), "Vibration of variable thickness plates with edges elastically re-strained against translation and rotation", Thin-Wall. Struct., 42, 1-24.   DOI
5 Chang, S. (2000), "Differential Quadrature and its Applications in Engineering", Springer-Verlag London Limited, London, UK.
6 Civalek, O. (2008), "Analysis of thick rectangular plates with symmetric cross-ply laminates based on first-order shear deformation theory", J. Compos. Mater., 42(26), 2853-2867.   DOI
7 Civalek, O. (2008), "Free vibration analysis of symmetrically laminated composite plates with first-order shear deformation theory (FSDT) by discrete singular convolution method", Finite Elem. Anal. Des., 44(12-13), 725-731.   DOI
8 Civalek, O., Korkmaz, A. and Demir, C. (2010), "Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on two opposite edges", Adv. Eng. Softw., 41(4), 557-560.   DOI
9 Ferreira, A.J.M. and Fasshauer, G.E. (2007), "Analysis of natural frequencies of composite plates by an RBF-pseudospectral method", Comput. Struct., 79(2), 202-210.   DOI
10 Gorman, D.J. (1997), "Free vibration analysis of Mindlin plates with uniform elastic edge support by the superposition method", J. Sound Vib., 207(3), 335-350.   DOI
11 Kapuria, S. and Achary, G.G.S. (2005), "A coupled zigzag theory for the dynamics of piezoelectric hybrid cross-ply plates", Arch. Appl. Mech., 75(1), 42-57.   DOI
12 Gurses, M., Civalek, O. Korkmaz, A. and Ersoy, E. (2009), "Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory", Int. J. Numer. Method. Eng., 79(3), 290-313.   DOI
13 Hsu, M.H. (2010), "Vibration analysis of orthotropic rectangular plates on elastic foundations", Comput. Struct., 92(4), 844-852.   DOI
14 Kant, T. and Swaminathan, K. (2001), "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory", Comput. Struct., 53(1), 73-85.   DOI
15 Karami, G. and Malekzadeh, P. (2002), "Static and stability analysis of arbitrary straight-sided quadrilateral thin plates by DQM", Int. J. Solids Struct., 39(19), 4927-4947.   DOI
16 Karami, G., Malekzadeh, P. and Mohebpour, S.R. (2006), "DQM free vibration analysis of moderately thick symmetric laminated plates with elastically restrained edges", Comput. Struct., 74(1), 115-125.   DOI
17 Khanm I.A. and Awari, G.K. (2015), "Harmonic analysis of square plate with and without uncertain parameters", Int. J. Recent Inn. Trends Comput. Comm., 3(2), 13-16
18 Khdeir, A.A. (1989), "Free vibration and buckling of unsymmetric cross-ply laminated plates using a refined theory", J. Sound Vib., 128(3), 377-395.   DOI
19 Li, K.M. and Yu, Z. (2009), "A simple formula for predicting resonant frequencies of a rectangular plate with uniformly restrained edges", J. Sound Vib., 327(1-2), 254-268.   DOI
20 Li, W.L., Zhang, X., Du, J. and Liu, Z. (2009), "An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports", J. Sound Vib., 321(1-2), 254-269.   DOI
21 Liew, K.M., Han, J.B. and Xiao, Z.M. (1996), "Differential quadrature method for thick symmetric cross-ply laminates with first-order shear exibility", Int. J. Solids Struct., 33(18), 2647-2658.   DOI
22 Liu, F.L. (2000), "Static analysis of thick rectangular laminated plates: three-dimensional elasticity solutions via differential quadrature element method", Int. J. Solids Struct., 37(51), 7671-7688.   DOI
23 Maithry, K. and Chandra Mohan Rao, B.D. (2015), "Dynamic analysis of laminated composite plates", Int. J. Res. Eng. Technol., 4(13), 116-121.
24 Malekzadeh, P. (2009), "Three-dimensional free vibration analysis of thick laminated annular sector plates using a hybrid method", Comput. Struct., 90(4), 428-437.   DOI
25 Nath, Y. and Shukla, K.K. (2001), "Non-linear transient analysis of moderately thick laminated composite plates", J. Sound Vib., 247(3), 509-526.   DOI
26 Ngo, D., Cong, N., Duy, M., Karunasena, W. and Cong, T.T. (2011), "Free vibration analysis of laminated composite plates based on FSDT using one-dimensional IRBFN method", Comput. Struct., 89(1-2), 1-2.   DOI
27 Noor, A.K. (1973), "Free vibrations of multilayered composite plates", AIAA J., 11(7), 1038-1039.   DOI
28 Ohya, F., Ueda, M., Uchiyama, T. and Kikuchi, M. (2006), "Free vibration analysis by the superposition method of rectangular Mindlin plates with internal columns resting on uniform elastic edge supports", J. Sound Vib., 289(1-2), 1-24.   DOI
29 Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752.   DOI
30 Rao, Y.S. and Reddy, B.S. (2012), "Harmonic analysis of composite propeller for marine applications", Int. J. Res. Eng. Technol., 1(3), 257-260.   DOI
31 Senthilnathan, N.R., Lim, K.H., Lee, K.H. and Chow, S.T. (1987), "Buckling of shear deformable plates", AIAA J., 25(9), 1268-71.   DOI
32 Sharma, A.K., Mittal, N.D. and Sharma, A. (2014), "Free vibration analysis of moderately thick Antisymmetric angle ply laminated rectangular plates with elastic edge constraints", Mech. Adv. Mater. Struct., 21(5), 341-348.   DOI
33 Sharma, A.K. and Mittal, N. D. (2013), "Free vibration analysis of laminated composite plates with elastically restrained edges using FEM", Central. Eur. J. Eng., 3(2), 306-315.
34 Sharma, A., Sharda, H.B. and Nath, Y. (2005), "Stability and vibration of thick laminated composite sector plates", J. Sound Vib., 287(1-2), 1-23.   DOI
35 Sharma, A.K. and Mittal, N.D. (2010), "Review on stress and vibration analysis of composite plates", J. Appl. Sci., 10(23), 3156-3166.   DOI
36 Sharma, A.K., Mittal, N.D. and Sharma, A. (2011), "Free vibration analysis of moderately thick antisymmetric cross-ply laminated rectangular plates with elastic edge constraints", Int. J. Mech. Sci., 53(9), 688-695.   DOI
37 Shu, C. and Richards, B.E. (1992), "Application of generalized differential quadrature to solve two dimensional incompressible Navier-Stokes equations", Int. J. Numer. Meth. Fl., 15(7), 791-798.   DOI
38 Shu, C. and Wang, C.M. (1999), "Treatment of mixed and nonuniform boundary conditions in GDQ vibration analysis of rectangular plates", Eng. Struct., 21, 125-134.   DOI
39 Wang, X. and Wang, Y. (2004), "Free vibration analyses of thin sector plates by the new version of differential quadrature method", Comput. Method. Appl. M., 193(36-38), 3957-3971.   DOI
40 Useche, J., Albuquerque, E.L. and Sollero, P. (2012), "Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method", Eng. Anal. Bound. Elem., 36(11), 1528-1535.   DOI
41 Wang, X., Gan, L. and Zhang, Y. (2008), "Differential quadrature analysis of the buckling of thin rectangular plates with cosine-distributed compressive loads on two opposite sides", Adv. Eng. Softw., 39(6), 497-504.   DOI
42 Whitney, J.M. and Pagano, N.J. (1970), "Shear deformation in heterogeneous anisotropic plates", J. Appl. Mech., 37(4), 1031-1036.   DOI
43 Zhang, X. and Li, W.L. (2009), "Vibrations of rectangular plates with arbitrary non-uniform elastic edge restraints", J. Sound Vib., 326(1-2), 221-234.   DOI
44 Zhang, Y.X. and Yang, C.H. (2009), "Recent developments in finite element analysis for laminated composite plates", Comput. Struct., 88(1), 147-157.   DOI
45 Zhou, D. (2001), "Vibrations of Mindlin rectangular plates with elastically restrained edges using static Timoshenko beam functions with the Rayleigh Ritz method", Int. J. Solids Struct., 38(32-33), 5565-5580.   DOI