• Title/Summary/Keyword: isotropic cubic

Search Result 17, Processing Time 0.017 seconds

Optimum Conditions for Growing Gem-quality Colorless Cubic Zirconia (보석용 무색 큐빅 저코니아의 최적 육성 조건)

  • 김원사;유영문;신현숙
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.99-110
    • /
    • 2001
  • A gem-quality yttria-stabilized zirconium oxide crystals were synthesized by the skull-melting method, using the RF electrical apparatus. Principal raw materials used were $ZrO_2$and 25 wt.% $Y_2O_3$as stabilizer and 0.03~0.05 wt.% $Nd_2O_3$decolorizing agent were added to it. The single crystals were approximately 20$\times$63 mm in size with chemical composition $Zr_{0.73}$ $Y_{0.27}$ $O_{1.87}$ . The crystals are isotropic with no appreciable anisotropism under a polarizing microscope. Their refractive indices are in the range of 2.15~2.18, specific gravity 5.85, Mohs' hardness 8~8.5, and reflectivity 13.47%. The zirconia crystals were confirmed to have cubic structure with Face-centered lattice(Z=4), space group Fm3m ($CaF_2$-type structure) and unit cell parameters are a=5.157 $\AA$. The optimal growing conditions for yttria-stabilized zirconia are 50 kW, 2.94 MHz in power and to use a crucible with 105 mm $\times$ 135 mm in size. When the lowering speed of the crucible was set 16mm/hr gave the best yield, 42%. Since the refractive index(2.15~2.18) of cubic zirconia is smaller than that of diamond, the angle between crown and pavilion should be fashioned to make it smaller than $40.5^{\circ}$ to show the maximum brilliancy and fire.

  • PDF

Development and validation of a non-linear k-ε model for flow over a full-scale building

  • Wright, N.G.;Easom, G.J.;Hoxey, R.J.
    • Wind and Structures
    • /
    • v.4 no.3
    • /
    • pp.177-196
    • /
    • 2001
  • At present the most popular turbulence models used for engineering solutions to flow problems are the $k-{\varepsilon}$ and Reynolds stress models. The shortcoming of these models based on the isotropic eddy viscosity concept and Reynolds averaging in flow fields of the type found in the field of Wind Engineering are well documented. In view of these shortcomings this paper presents the implementation of a non-linear model and its evaluation for flow around a building. Tests were undertaken using the classical bluff body shape, a surface mounted cube, with orientations both normal and skewed at $45^{\circ}$ to the incident wind. Full-scale investigations have been undertaken at the Silsoe Research Institute with a 6 m surface mounted cube and a fetch of roughness height equal to 0.01 m. All tests were originally undertaken for a number of turbulence models including the standard, RNG and MMK $k-{\varepsilon}$ models and the differential stress model. The sensitivity of the CFD results to a number of solver parameters was tested. The accuracy of the turbulence model used was deduced by comparison to the full-scale predicted roof and wake recirculation zone lengths. Mean values of the predicted pressure coefficients were used to further validate the turbulence models. Preliminary comparisons have also been made with available published experimental and large eddy simulation data. Initial investigations suggested that a suitable turbulence model should be able to model the anisotropy of turbulent flow such as the Reynolds stress model whilst maintaining the ease of use and computational stability of the two equations models. Therefore development work concentrated on non-linear quadratic and cubic expansions of the Boussinesq eddy viscosity assumption. Comparisons of these with models based on an isotropic assumption are presented along with comparisons with measured data.

Characteristics of High Density U-Mo Alloy Powder Prepared by Centrifugal Atomization

  • Kim, Ki-Hwan;Ahn, Hyeon-Seok;Lee, Don-Bae;Park, Hee-Dae;Kim, Chang-Kyu;Baek, Kyeong-Wook
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.213-218
    • /
    • 1996
  • Characteristics of high density U-Mo alloy powder prepared by centrifugal atomization have been examined. The results indicate that the majority of the atomized U-Mo alloy particles has a smooth surface and frequently near-perfect spheroidal shape with few satellites attached. The size distribution of atomized U-Mo alloy powder shows the mono-modal size distribution seen in ligament disintegration mechanism. All phases of atomized alloy powder below 150$\mu\textrm{m}$ irrespectively to particle size are found to be ${\gamma}$-U (cubic structure) phases with isotropic structure and not to be U$_2$Mo phase at all. The microstructure of atomized U-Mo alloy particulates has micro-crystalline structure with non-dendritic gram supersaturated with Mo element. Also the grain size of ${\gamma}$ -U tends to decrease with the decrease of the powder diameter.

  • PDF

Magnetic Properties of Magnetites at Low Temperatures (자철석의 저온 자화특성)

  • Hong, Hoa-Bin;Yu, Yong-Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.37-42
    • /
    • 2011
  • Magnetic properties at low-temperatures can diagnose the presence of certain magnetic minerals in rocks. At the Verwey transition temperature ($T_v$, ~105~120 K), magnetite transforms from monoclinic to cubic structure as the temperature increases. At the isotropic point ($T_i$, ~135 K), magnetocrystalline anisotropic constant of magnetite passes through zero (from negative to positive) as the temperature decreases so that its optimal remanence acquisition axis changes from [111] to [001]. A sharp remanence drop was observed at $T_v$ during warming of LTSIRM (low-temperature saturation isothermal remanent magnetization). For cooling of RTSIRM (room-temperature saturation isothermal remanent magnetization), the remanence decreased on passing $T_i$ and $T_v$. On warming of RTSIRM, remanence recovery becomes more prominent as the average grain size of magnetite increases. In summary, the SIRM memory decreases with increasing grain size of magnetite. A similar, but rather gradual, remanence transition occurs for natural samples due to contribution of cations other than Fe. As a non-destructive tool, low-temperature magnetic behavior is sensitive to unravel the magnetic remanence carriers in terrestrial rocks or meteorites.

Synthesis and Crystal Structure of Yttria-Stabilized Zirconia (이트리아를 첨가한 저코니아의 합성과 결정구조)

  • Kim, Won-Sa;Suh, Il-Hwan;Bak, Ro-Hak;Kim, Moon-Jib;Kim, Huhn-Jun;Lee, Chang-Hee;Kim, Yong-Che;Seong, Baek-Seok;Lee, Jeong-Soo;Shim, Hae-Seop;Kim, Yi-Kyung;Lee, Jin-Ho
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.553-558
    • /
    • 1997
  • Colorless and transparent cubic zirconia($Zr_{0.73}Y_{0.27}O_{1.87}$) crystal has been synthesized by the Bridgman-Stock-bager method(also called Skull melting method). $Y_2O_3$ is used as stabilizer. The crystal shows a vitreous luster with a slight oily appearance. Under a polarizing microscope, it shows isotropic nature with no appreciable anisotropism. Mohs hardness value is measured to be $8{\sim}8\frac{1}{2}$ and specific gravity 5.85. Under ultraviolet light it shows a faint white glow. The crystal structure of yttria stabilized zirconia was determined, using single crystal X-ray diffraction techniques to be a cubic symmetry, space group $Fm\overline{3}m({O^5}_h)$ with $a=5.1552(5){\AA}$, $V=136.99(5){\AA}^3$, Z=4, and R=0.0488 for 29 unique reflections. Each zirconium atom is at the center of eight oxygen atoms situated at the corners of a surrounding cube and each oxygen atom is at the center of a tetrahedron of zirconium atoms. So a coordination of 8:4 holds in the structure.

  • PDF

Investigations of the Phase Behavior of N-dodecanocyl-N-methyl amido polyol carboxyl alkyl ether/N-dodecanocyl-N-alkyl Glucamine/Water System (N-도데카노실-N-메틸 아미도 폴리올 카르복시 알킬 에테르/(N-도데카노실-N-알킬 글루카민)/물계에서의 상거동 관찰)

  • Kang, Yun-Seog;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.23-28
    • /
    • 1997
  • The phase diagram for the surfactant mixture system of N-dodecanocyl-N-methyl amido polyolcarboxyl alkyl ether(DGC)/N-dodecanocyl-N-alkyl glucamine(DG)/water was studied usingpolarized microscopy, differential scanning calorimetry(DSC) and rheological measurements respectively. Using polarized microscopy, the textures of liquid crystal phases obtained at various surfactantconcentrations were investigated as a function of surfactant concentration and temperature, and phasetransitions between anisotropic liquid crystal phases and isotropic liquid phase were examined usingDSC measurements. Viscoelastic properties of surfactant solutions determined between hexagonal andlamellar liquid crystal phase by rheological measurements were approximately consistent with the resultsobtained by polarized microscopy and DSC. In the study for the phase of DGC/DG(5:5 mol ratio)/water system. It could be found that the hexagonal liquid crystal phase appeared at 25${\sim}$60wt% ofsurfactant, the cubic liquid crystal phase at 50${\sim}$65wt% and the lamellar crystal phase at above 70wt%.

Second Harmonic Rotational Anisotropy of Polycrystalline Fe Films on Glass Substrates (유리 위에 증착된 다결정 Fe 자성박막의 이차조화파 회전 이방성)

  • Lee, Feel;Jeong, Jae-Woo;Lee, Hun-Sung;Lee, Kyung-Dong;Kim, Ji-Wan;Shin, Sung-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.2
    • /
    • pp.47-51
    • /
    • 2009
  • The surface structure of polycrystalline Fe films of various thicknesses on glass substrates have been studied using a Ti: Sapphire laser at 780 nm. We found that the surface structure possesses C$_s$ crystal structure close to $C_{2v}$ through symmetry consideration. We present one-fold intensity profile with one mirror plane in second harmonic (SH) intensity as a proof of $C_s$ symmetry. $C_s$ and $C_{2v}$ surface symmetries usually appear at the (110) surface of a cubic diamond single crystal [1]. Therefore this surface symmetry would be related to bcc (110) growth orientation coinciding with XRD measurement. Further we treated surface normalized SH asymmetry with various thicknesses. The SH asymmetry increases with increasing of film thickness. From these results, it is observed that the surface structure of thin polycrystalline Fe film below 5 nm is almost isotropic, while in the case of the thicker Fe films, surface structure have $C_s$ symmetry structure close to $C_{2v}$.