Browse > Article
http://dx.doi.org/10.9727/jmsk.2011.24.1.037

Magnetic Properties of Magnetites at Low Temperatures  

Hong, Hoa-Bin (Department of Geology and Earth Environmental Sciences, Chungnam National University)
Yu, Yong-Jae (Department of Geology and Earth Environmental Sciences, Chungnam National University)
Publication Information
Journal of the Mineralogical Society of Korea / v.24, no.1, 2011 , pp. 37-42 More about this Journal
Abstract
Magnetic properties at low-temperatures can diagnose the presence of certain magnetic minerals in rocks. At the Verwey transition temperature ($T_v$, ~105~120 K), magnetite transforms from monoclinic to cubic structure as the temperature increases. At the isotropic point ($T_i$, ~135 K), magnetocrystalline anisotropic constant of magnetite passes through zero (from negative to positive) as the temperature decreases so that its optimal remanence acquisition axis changes from [111] to [001]. A sharp remanence drop was observed at $T_v$ during warming of LTSIRM (low-temperature saturation isothermal remanent magnetization). For cooling of RTSIRM (room-temperature saturation isothermal remanent magnetization), the remanence decreased on passing $T_i$ and $T_v$. On warming of RTSIRM, remanence recovery becomes more prominent as the average grain size of magnetite increases. In summary, the SIRM memory decreases with increasing grain size of magnetite. A similar, but rather gradual, remanence transition occurs for natural samples due to contribution of cations other than Fe. As a non-destructive tool, low-temperature magnetic behavior is sensitive to unravel the magnetic remanence carriers in terrestrial rocks or meteorites.
Keywords
Magnetite; saturation remanent magnetization; remanence memory; Verwey transition; isotropic point;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Verwey, E.J.W. (1939) Electronic conduction of magnetite and its transition point at low temperatures. Nature, 144, 327-328.
2 Yu, Y. and Dunlop, D.J. (2001) Paleointensity determination on the late Precambrian Tudor Gabbro. Ontario, J. Geophys. Res., 106, 26, 331-26, 343.
3 Yu, Y., Dunlop, D.J., and Ozdemir, O. (2003) On the resolution of multivectorial remanences. Earth Planet. Sci. Lett., 208, 13-26.   DOI   ScienceOn
4 Hodych, J.P., Mackay, R.I., and English, G.M. (1998) Low-temperature demagnetization of saturation remanence in magnetite-bearing dolerites of high coercivity. Geophys. J. Int., 132, 401-411.   DOI   ScienceOn
5 Kohout, T., Kosterov, A., Jackson, M., Pesonen, L.J., Kletetschka, G., and Lehtinen, M. (2007) Low-temperature magnetic properties of the Neuschwanstein EL6 meteorite. Earth Planet. Sci. Lett., 261, 143-151.   DOI   ScienceOn
6 Liu, Q., Yu, Y., Muxworthy, A.R., and Roberts, A.P. (2008) Effects of internal stress on remanence intensity jumps across the Verwey transition for multidomain magnetite. Phys. Earth Planet. Inter., 169, 100-107.   DOI   ScienceOn
7 Medrano, C., Schlenker, M., Baruchel, J., Espeso, J., and Miyamoto, Y. (1999) Domains in the low-temperature phase of magentite from synchrotron-radiation x-ray topographs. Phys. rev., 59, 1185-1195.   DOI   ScienceOn
8 Moloni, K., Moskowitz, B.M., and Dahlberg, E.D. (1996) Domain structures in single crystal magnetite below the Verwey transition as observed with a low-temperature magnetic force microscope. Geophys. Res. Lett., 23, 2851-2854.   DOI   ScienceOn
9 Moskowitz, B.M., Jackson, M., and Kissel, C. (1998) Lowtemperature magnetic behaviour of titanomagnetites. Earth Planet. Sci. Lett., 157, 141-149.   DOI   ScienceOn
10 Ozdemir, O. (2000) Coercive force of single crystals of magnetite at low temperatures, Geophys. J. Int., 141, 351-356.   DOI   ScienceOn
11 Ozdemir, O. and Dunlop, D.J. (1993) The effect of oxidation on the Verwey transition in magnetite. Geophys. Res. Lett., 20, 1671-1674.   DOI   ScienceOn
12 Ozdemir, O., Dunlop, D.J., and Moskowitz, B.M. (2002) Changes in remanence, coercivity, and domain state at low temperature in magnetite. Earth Planet. Sci. Lett., 194, 343-358.   DOI   ScienceOn
13 Syono, Y. (1965) Magnetocrystalline anisotropy and magnetostriction of $Fe_3O_4-Fe_2TiO_4$ series with special application to rock magnetism. Jap. J. Geophys., 4, 71-143.
14 Abe, K., Miyamoto, Y., and Chikazumi, S. (1976) Magnetocrystalline anisotropy of low temperature phase of magnetite. J. Phys. Soc. Japan, 41, 1894-1902.   DOI
15 Aragon, R. (1992) Magnetization and exchange in nonstoichiometric magnetite. Phys. Rev., 46, 5328-5333.   DOI   ScienceOn
16 Dunlop, D.J., Schutts, L.D., and Hale, C.J. (1984) Paleomagnetism of Archean rocks from northwestern Ontario, 3, Rock magnetism of the Shelley Lake granite, Quetico Subprovince. Can. J. Earth Sci., 21, 879-886.   DOI
17 Aragon, R., Buttrey, D.J., Shepherd, J.P., and Honig, J. M. (1985) Influence of nonstoichiometry on the Verwey transition. Phys. Rev., 31, 430-436.   DOI   ScienceOn
18 Brabes, V.A.M., Walz, F., and Kronmuller, H. (1998) Impurity effects upon the Verwey transition in magnetite. Phys. Rev., 58, 14,163-14,166.   DOI
19 Carporzen, L., Gilder, S.A., and Hart, R.J. (2006) Origin and implications of two Verwey transitions in the basement rocks of the Vredefort meteorite crater, South Africa. Earth Planet. Sci. Lett., 251, 305-317.   DOI   ScienceOn