• Title/Summary/Keyword: isoquinoline alkaloid

Search Result 44, Processing Time 0.024 seconds

Effects of Chelidonine on L-DOPA-Induced Cytotoxicity in PC12 Cells (Chelidonine이 PC12 세포내의 L-DOPA-유도 세포독성에 미치는 영향)

  • Kim, Yu-Mi;Lee, Jae-Joon;Jin, Chun-Mei;Yang, Yoo-Jung;Kang, Min-Hee;Lee, Myung-Koo
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.3 s.134
    • /
    • pp.242-245
    • /
    • 2003
  • The effects of chelidonine, a benzophenanthridine isoquinoline alkaloid, on L-DOPA-induced cytotoxicity in PC12 cells were investigated. The treatment of PC12 cells with chelidonine $(1-4\;{\mu}M)$ decreased dopamine content in a dose-dependent manner (30.2% inhibition at $4\;{\mu}M)$. Chelidonine was not cytotoxic up to $4\;{\mu}M)$. However, chelidonine at concentrations higher than $5\;{\mu}M$ caused a cytotoxicity in PC12 cells. L-DOPA at concentrations higher than $50\;{\mu}M$ led to cell damage by oxidative stress in PC12 cells. Chelidonine at non-cytotoxic concentration ranges of $1-4{\mu}M$ aggravated L- DOPA $(20-50\;{\mu}M)$-induced cytotoxicity in PC12 cells. The L-DOPA-induced cytotocxicity was synergistically stimulated by chelidonine at concentrations grader than $5\;{\mu}M$. These data demonstrate that chelidonine exacerbates L-DOPA-induced cytotoxicity. Therefore, it is proposed that the long-term L-DOPA therapeutic patients with chelidonine may need to be checked for the adverse symptoms.

The Effects of Majarol on the Blood Pressure and Heart Rate in Rats and Isolated Frog Heart (Majarine 유도체인 majarol의 흰쥐에 있어서 혈압 및 심박동수에 대한 작용과 적출 개구리 심장에 대한 작용)

  • Lee Jong-Hwoa;Park Young-Hyun;Cho Byung-Heon;Kim Yu-Jae;Kim Jong-Bae;Kim Chun-Sook;Cha Young-Deog;Kim Young-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.22 no.1 s.38
    • /
    • pp.34-44
    • /
    • 1986
  • In our previous studies, we had clarified many pharmacological effects of majarine: the bacteriostatic effect in vitro; the potentiation of hypnotic action of alcohol; hypotensive effect in rats and hypothermic effect in mice. This study was undertaken to search for a new antihypertensive drug. Red crystalline was obtained from majarine (which was extracted from Berberis koreana Palibin) by chemical methods. And this crystalline was identified as $C_{19}H_{16}NO_4$ contained one hydroxy group instead of methoxy group of majarine in isoquinoline ring and named 'Majarol' (5,6-Dihydro-9-hydroxy, 10-methoxybenzo-[g]-1,3-benzodioxolo [5,6-a] quinolizinium). We examined the effects of majarol on blood pressure and heart rate in urethane ancsthetized rats and the rate and amplitude of contraction of isolated frog heart. Several drugs: atropine sulfate, diphenhydramine chloride, hexamethonium bromide, phentolamine, epinephrine, propranolol and isoproterenol were used to clarify the mechanism of the hypotensive action of majarol. The results of experimints were as follows; 1. In low dose (0.5-2mg/kg, i.v.), majarol showed a typical transient hypotensive effect and slight decrease in heart rate. In high dose (5-10 mg/kg, i.v.), majarol showed a typical transient and a subsequent prolonged hypotensive effect and a significant prolonged decrease in heart rate was followed. 2. The hypotensive effects of majarol was not abolished by the pretreatments with atropine sulfate, hexamethonium bromide and diphenhydramine. The pretreatment with phentolamine inhibited significantly the hypotensive effects of majarol and the pretreatment wtih majarol blocked markedly the hypertensive effect of epinephrine. The positive chronotropic effect of isoproterenol was not blocked by the pretreatment with majarol. 3. In low dose, majarol increased the amplitude and decreased rate of contraction, but in high dose, majarol inhibited the amplitude and rate of contraction of isolated frog heart.

  • PDF

Down-regulation of TNF-$\alpha$ and IL-6 by Higenamine is Responsible for Reduction of Infarct Size and Myocardial Ischemic Injury in the Rat

  • Lee, Young-Soo;Kang, Young-Jin;Lee, Bog-Kyu;Ko, Young-Shim;Park, Min-Kyu;Seo, Han-Geuk;Yun-Choi, Hye-Sook;Chang, Ki-Churl
    • Biomolecules & Therapeutics
    • /
    • v.9 no.3
    • /
    • pp.167-175
    • /
    • 2001
  • Recent studies have shown that cytokines are capable of modulating cardiovascular function and that some drugs used in the treatment of heart failure variably modulate the production of cytokines. Hige- namine, a positive inotropic isoquinoline alkaloid, has been used traditionally as cardiac stimulant, and reported to reduce nitric oxide (NO) and inducible nitric oxide synthase (iNOS) expression in LPS- and/or cytokine-activated cells in vitro and in vivo. Therefore, we investigated whether higenamine modulates the production of proinflammatory cytokines in myocardial infarction. In addition, effects of higenamine on antioxidant action and antioxidant enzyme expression (MnSOD) were studied. Myocardial infarction (MI) was confirmed by measuring left ventricular (LV) pressure after occlusion of the left anterior descending coronary artery (LAD) for 5 weeks in rats. Treatment of higenamine (10 mg/kg/day) reduced infarct size about 35 %, which accompanied by reduction of production TNF-$\alpha$, IL-6, but not IFN-${\gamma}$ and IL-1$\beta$ in the myocardium. The expression of TNF-$\alpha$ mRNA in infracted myocardium was significantly reduced by higenamine. Although iNOS mRNA was not detected, nitrotyrosine staining was significantly increased in myocardium of Ml compared to higenamine-treated one, Indicating that peroxynitrite-induced damage is evident in MI. Cytochrome c oxidation by peroxynitrite was concentration-dependently reduced by higenamine, an effect which was almost compatible to glutathion. Higenamine treatment did not affect the expression of MnSOD mRNA in myocardial tissues in MI. Taken together, higenamine may be beneficial in oxidative stress conditions such as ischemic-reperfusion injury and MI due to antioxidant action as well as modulation of cytokines.

  • PDF

Berberine Suppresses Hepatocellular Carcinoma Proliferation via Autophagy-mediated Apoptosis (베르베린을 처리한 간세포암에서 자가포식 경로와 관련된 세포자멸사)

  • Yun Kyu Kim;Myeong Gu Yeo
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.287-295
    • /
    • 2024
  • Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide, necessitating novel therapeutic strategies. The chemotherapeutic agents used to treat HCC patients are toxic and have serious side effects. Therefore, we investigated the efficacy of anticancer drugs that reduce side effects by targeting tumor cells without causing cytotoxicity in healthy hepatocytes. Berberine, an isoquinoline alkaloid derived from plant compounds, has emerged as a potential candidate for cancer treatment due to its diverse pharmacological properties. The effect of berberine on HepG2 cell viability was determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay. HepG2 cell proliferation was determined through a colony-forming assay. The effects of berberine on HepG2 cell migration were evaluated using a wound-healing assay. Berberine inhibited the proliferation of HepG2 cells, as well as colony formation and migration. Berberine treatment increased the expression of autophagy-related genes and proteins, including Beclin-1 and LC3-II, and elevated the activities and mRNA expression of Caspase-9 and Caspase-3. Additionally, in experiments utilizing the Cell-Derived Xenograft animal model, berberine treatment reduced tumor size and weight in a concentration-dependent manner. These results demonstrate the potential of berberine as a versatile anticancer agent with efficacy in both cellular and animal models of hepatocellular carcinoma. The findings herein shed light on berberine's efficacy against HCC, presenting opportunities for targeted and personalized therapeutic interventions.