• 제목/요약/키워드: isolator

검색결과 467건 처리시간 0.027초

의탄성 형상기억합금 메쉬 와셔가 적용된 수동형 진동절연기의 수학적 등가모델 도출 (Derivation of Numerical Equivalent Model of Vibration Isolator using Pseudoelastic SMA Mesh Washer)

  • 권성철;전수현;오현웅
    • 항공우주시스템공학회지
    • /
    • 제8권3호
    • /
    • pp.6-13
    • /
    • 2014
  • A passive launch and on-orbit vibration isolator using SMA(Shape Memory Alloy) washer for both the structural safety of the micro-vibration source by attenuating the transmitted force under launch loads and the micro-vibration isolation during their on-orbit operation has been proposed, which does not require the additional launch locking mechanism. To measure the characteristics of SMA mesh washer, we performed compressive loading tests with a single SMA mesh washer and a vibration isolator using SMA mesh washer. The numerical equivalent model of vibration isolator using SMA mesh washer composed of two spring and viscous damping elements has been verified that both stiffness and viscous damping varied with respect to compressed deformations. In addition, the effectiveness of launch loads and micro-vibration reduction has been investigated through the dynamic characteristics measurement test of cooler assembly combined with passive vibration isolator.

면진장치 설치각도에 따른 아치구조물의 지진응답 (Seismic Response of Arch Structure with Base Isolation Device Depending on Installation Angle)

  • 김기철;이준호
    • 한국공간구조학회논문집
    • /
    • 제22권1호
    • /
    • pp.25-32
    • /
    • 2022
  • The seismic behaviors of the arch structure vary according to the rise-span ratio of the arch structure. In this study, the rise-span ratio (H/L) of the example arch structure was set to 1/4, 1/6, and 1/8. And the installation angle of the seismic isolator was set to 15°, 30°, 45°, 60° and 90°. The installation angles of the seismic isolator were set by analyzing the horizontal and vertical reaction forces according to the rise-span ratio of the arch structure. Due to the geometrical and dynamic characteristics of the arch structure, the lower the rise-span ratio, the greater the horizontal reaction force of the static load, but the smaller the horizontal reaction force of the dynamic load. And if the seismic isolator is installed in the direction of the resultant force of the reaction forces caused by the seismic load, the horizontal seismic response becomes small. Also, as the installation angle of the seismic isolator increases, the hysteresis behavior of the seismic isolator shows a plastic behavior, and residual deformation appears even after the seismic load is removed. In the design of seismic isolators for seismic response control of large space structures such as arch structures, horizontal and vertical reaction forces should be considered.

PSO알고리즘을 활용한 능동 제진 시스템 PID 오토 튜닝에 관한 연구 (A Study on the Active Vibration Isolator PID Auto-tuning Using PSO Algorithm)

  • 안일균;허헌;김효영;김기현
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.59-64
    • /
    • 2022
  • Vibration is one of the factors that degrades the performance of equipment and measurement equipment used in high-tech industries such as semiconductors and display. The vibration isolator is classified into passive type and active type. The passive vibration isolator has the weakness of insufficient vibration isolation performance in the low frequency band, so an active vibration control system that can overcome these problems is used recently. In this paper, PID controller is used to control the active vibration isolator. Methods for setting the gain of the PID controller include the Zeigler-Nichols method, the pole placement method. These methods have the disadvantage of requiring a lot of time or knowing the system model accurately. This paper proposes the gain auto tuning method of the active vibration isolator applied with the PSO algorithm, which is an optimization algorithm that is easy to implement and has stable convergence performance with low calculations. It is expected that it will be possible to improve vibration isolation performance and reduce the time required for gain tuning by applying the proposed PSO algorithm to the active vibration isolator.

Seismic vibration control of bridges with excessive isolator displacement

  • Roy, Bijan K.;Chakraborty, Subrata;Mishra, Sudib K.
    • Earthquakes and Structures
    • /
    • 제10권6호
    • /
    • pp.1451-1465
    • /
    • 2016
  • The effectiveness of base isolation (BI) systems for mitigation of seismic vibration of bridges have been extensively studied in the past. It is well established in those studies that the performance of BI system is largely dependent on the characteristics of isolator yield strength. For optimum design of such systems, normally a standard nonlinear optimization problem is formulated to minimize the maximum response of the structure, referred as Stochastic Structural Optimization (SSO). The SSO of BI system is usually performed with reference to a problem of unconstrained optimization without imposing any restriction on the maximum isolator displacement. In this regard it is important to note that the isolator displacement should not be arbitrarily large to fulfil the serviceability requirements and to avoid the possibility of pounding to the adjacent units. The present study is intended to incorporate the effect of excessive isolator displacement in optimizing BI system to control seismic vibration effect of bridges. In doing so, the necessary stochastic response of the isolated bridge needs to be optimized is obtained in the framework of statistical linearization of the related nonlinear random vibration problem. A simply supported bridge is taken up to elucidate the effect of constraint condition on optimum design and overall performance of the isolated bridge compared to that of obtained by the conventional unconstrained optimization approach.

PCS단말기용 아이솔레이터의 설계제작 (Design and Implementation of Isolator for PCS Phone)

  • 권원현;김태현;이영훈
    • 대한전자공학회논문지TC
    • /
    • 제37권3호
    • /
    • pp.49-57
    • /
    • 2000
  • 본 연구에서는 집중정수형 아이솔레이터를 산란행렬을 이용하여 해석 및 설계하고, 설계된 최적 파라메타 를 이용하여 1.7650Hz 대역의 PCS 단말기용 소형 아이솔레이터를 제작하고 시험하였다. 7.Ox7.Ox2.3㎣ 의 크기로 구현된 아이솔레이터의 전력 Isolation S/sub 12/는 중심주파수에서 약 29.95 dB 이상으로 측정되었으며, 삽입손실 S/sub 21/특성은 30MHz 동작 대역폭 내에서 약 0.35 dB 이하의 손실을 나타내었다. 입출력단 반 사계수 5/sub 11/ 및 5/sub 22/는 동작대역폭 내에서 -19 dB로 측정되어 구현된 제품이 기존의 제품에 비해 우수한 성 능 특성을 지니고 있음을 알 수 있었다.

  • PDF

이중모드 스크램제트 엔진 Flowpath 해석 연구 (A Analysis Study of Dual-Mode Scramjet Engine Flowpath)

  • 변종열;안중기
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.277-284
    • /
    • 2017
  • 본 연구는 이중모드 스크램제트 엔진의 흡입구, isolator, 연소기, 노즐에서의 flowpath 유동특성에 대한 해석적 연구결과이다. 이중모드 스크램제트 엔진의 설계와 성능을 파악하기 위해서는 공력, 열역학적 특성, 추진 그리고 전체 시스템에 대한 성능 모델과 해석 도구의 개발이 반드시 요구된다. 본 연구에서는 이중모드 스크램제트 엔진의 각 구성품인 흡입구, isolator, 연소기, 노즐에 대한 해석 모델을 정립하고, 개발된 해석 도구를 사용하여 이중모드 스크램제트 엔진의 성능특성을 파악해 보았다.

  • PDF

MR 댐퍼의 비선형해석을 이용한 반능동형 제진대에 관한 연구 (A Study on Semi-active Vibration Isolation Table using a Nonlinear Analysis of the MR Damper)

  • 김도영;전종균;권영철
    • 한국소음진동공학회논문집
    • /
    • 제24권11호
    • /
    • pp.861-867
    • /
    • 2014
  • In this study, a semi-active isolator was constructed from applying a MR damper that used the MR fluid to an isolator. The parameter identification was also performed to determine the characteristics of this semi-active isolator during which the least squares method and the auxiliary variable method were applied to produce a value closest to the true value. In addition, the MR damper's nonlinear damping force was closely analyzed to greatly reduce the range of error. Based on this analysis, it was discovered that the parameter tended to increase with more electric current. Such analysis of the dynamic properties of semi-active isolator proved that constructing an isolator that provides a more stable operation could be achieved.

Implication of rubber-steel bearing nonlinear models on soft storey structures

  • Saiful Islam, A.B.M.;Hussain, Raja Rizwan;Jumaat, Mohammed Zamin;Mahfuz ud Darain, Kh.
    • Computers and Concrete
    • /
    • 제13권5호
    • /
    • pp.603-619
    • /
    • 2014
  • Soft storey buildings are characterised by having a storey that has a large amount of open space. This soft storey creates a major weak point during an earthquake. As the soft stories are typically associated with retail spaces and parking garages, they are often on the lower levels of tall building structures. Thus, when these stories collapse, the entire building can also collapse, causing serious structural damage that may render the structure completely unusable. The use of special soft storey is predominant in the tall building structures constructed by several local developers, making the issue important for local building structures. In this study, the effect of the incorporation of an isolator on the seismic behaviour of tall building structures is examined. The structures are subjected to earthquakes typical of the local city, and the isolator is incorporated with the appropriate isolator time period and damping ratio. A FEM-based computational relationship is proposed to increase the storey height so as to incorporate the isolator with the same time period and damping ratio for both a lead rubber bearing (LRB) and high-damping rubber bearing (HDRB). The study demonstrates that the values of the FEM-based structural design parameters are greatly reduced when the isolator is used. It is more beneficial to incorporate a LRB than a HDRB.

15층 철근콘크리트 건물에 설치된 통신설비 면진장치 동적 거동에 대한 실험적 연구 (An Experimental Study on the Dynamic Behavior of the Seismic Isolator for Telecommunication Equipment Installed in a 15-Story Reinforced Concrete Building)

  • 최형석;정동혁;서영득;백은림
    • 한국지진공학회논문집
    • /
    • 제25권6호
    • /
    • pp.241-249
    • /
    • 2021
  • Communication facilities play an essential role in disaster situations. Therefore, communication facilities need to have structural and functional safety during and after earthquakes. Recently, technology for partial seismic isolation has been increasing to protect data facilities and communication equipment installed in buildings from earthquakes. However, excessive displacement may occur in the seismic isolator during an earthquake due to the resonance between the building and the seismic isolator having long-period characteristics, which may cause overturning and separation of the installed equipment. In this study, analytical and experimental studies were conducted to evaluate the safety of seismic isolators installed in high-rise buildings. It was confirmed that damages might occur in buildings' seismic isolator, with resonance characteristics of less than 1 Hz.

Experimental investigation on the effectiveness of under-foundation isolator against train-induced vibrations considering foundation type

  • Ehsan Haghighi;Javad Sadeghi;Morteza Esmaeili
    • Structural Engineering and Mechanics
    • /
    • 제89권2호
    • /
    • pp.121-133
    • /
    • 2024
  • In this paper, the performance of under-foundation isolators against generally annoying train-induced vibrations was examined experimentally. The effect of foundation type on the efficacy of such isolators was investigated for the first time. To this end, laboratory models including a soil container, soil, building with three types of foundation (i.e., single, strip, and mat), and isolator layer were employed. Through various dynamic tests, the effects of foundation type, isolation frequency, and the dominant frequency of train load on the isolator's performance were studied. The results demonstrated that the vibration level in the unisolated building with the strip and mat foundation was, respectively, 29 and 38% lower than in the building with the single foundation. However, the efficacy of the isolator in the building with the single foundation was, respectively, 21 and 40% higher than in the building with the strip and mat foundation. Furthermore, a lower isolation frequency and a higher excitation frequency resulted in greater isolator efficacy. The best vibration suppression occurred when the excitation frequency was close to the floor's natural frequency.