• 제목/요약/키워드: isolation bearing

검색결과 245건 처리시간 0.019초

Comparison of the dynamic responses of $G\ddot{u}lburnu$ Highway Bridge using single and triple concave friction pendulums

  • Yurdakul, Muhammet;Ates, Sevket;Altunisik, Ahmet Can
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.511-525
    • /
    • 2014
  • The main object of this study is to determine and compare the structural behavior of base isolated long span highway bridge, $G\ddot{u}lburnu$ Highway Bridge, using single concave friction pendulum (SCFP) and triple concave friction pendulum (TCFP). The bridge is seismically isolated in the design phase to increase the main period and reduce the horizontal forces with moments using SCFP bearings. In the content of the paper, firstly three dimensional finite element model (FEM) of the bridge is constituted using project drawings by SAP2000 software. The dynamic characteristics such as natural frequencies and periods, and the structural response such as displacements, axial forces, shear forces and torsional moments are attained from the modal and dynamic analyses. After, FEM of the bridge is updated using TCFP and the analyses are performed. At the end of the study, the dynamic characteristics and internal forces are compared with each other to extract the TCFP effect. To emphasize the base isolation effect, the non-isolated structural analysis results are added to graphics. The predominant frequencies of bridge non-isolated, isolated with SCFP and isolated with TCFP conditions decreased from 0.849Hz to 0.497Hz and 0.338Hz, respectively. The maximum vertical displacements are obtained as 57cm, 54cm and 44cm for non-isolated, isolated with SCFP and isolated with TCFP conditions, respectively. The maximum vertical displacement reduction between isolated with TCFP bearing and isolated with SCFP bearing bridge is %23. Maximum axial forces are obtained as 60619kN, 18728kN and 7382kN, maximum shear forces are obtained as 23408kN, 17913kN and 16249kN and maximum torsional moments are obtained as 24020kNm, 7619kNm and 3840kNm for non-isolated, isolated with SCFP and isolated with TCFP conditions, respectively.

Antineoplastic Natural Products and the Analogues(IX). A Review of the Series

  • Ahn, Byung-Zun;Kim, Shin-Il;Ryu, Sung-Ho;Kang, Kyu-Sang;Lee, You-Hui
    • 생약학회지
    • /
    • 제17권2호
    • /
    • pp.168-177
    • /
    • 1986
  • Bioassay-directed isolation has yielded some cytotoxic substances against L1210 cell from the Korean traditional medicine. These include 5,2'-dihydroxy-6,7,8,6'-teramethoxyflavone $(IV,\;scutellaria\;root,\;ED_{50}\;=\;1.7\;{mu}g/ml)$, 7-geranyloxycoumarin $(XXXII,\;poncirus\;fruit,\;10.2\;{mu}g/ml) $and panaxydol $(I,\;white\;ginseng,\;0.03\;{mu}g/ml)$. IV, XXXII and their derivatives were synthesized in the purpose of in vivo tests and for observation of structure-activity relations. Among the flavone derivatives, 5,2',6'-trihydroxy-6,7,8-trimethoxy flavone (XVIII), 5-hydroxy-6,7,8-trimethoxy-6'-benzyloxyflavone (XVII) and 5,8-dihydroxy-6,7-dimethoxyflavone (X) showed the cytotoxicity which has no correlation to the flavone structures. Of the coumarins synthesized, 7,8-dihydroxycoumarin (XXVI), 6-7-dihydroxycoumarin (XXIX) and 6-hydroxy-5,7-dimethoxycoumarin (XXXI) showed considerable activities. Acetylated XXXI has moderate activity $(ED_{50}=17.2\;{mu}g/ml)$. Monobydroxycoumarins or their methyl and allyl ether were inactive. IV inhibits the growth of the solid form of S-180 by 70% at 40 mg/kg and shows T/C of 166% on the ascitic S-180 at 40 mg/kg. It strongly inhibits the activity of the membrane bounded ATPase from L1210 cell. The most cytotoxic fraction of the antitumor materials studied is the one from the trichosanthes root showing $ED_{50}=0. 0003\;{mu}g/ml$ against L1210 cell. This fraction, obtained from ethyl acetate extract, showed T/C of 130 and 135%, on ICR mice bearing S-180 and $BDF_1$ mice bearing L1210 at 10 mg/kg and 7.5 mg/kg, respectively.

  • PDF

면진된 원자력발전소 구조물의 경주지진 응답평가 (Seismic Response Evaluation of Seismically Isolated Nuclear Power Plant Structure Subjected to Gyeong-Ju Earthquake)

  • 김광전;양광규;김현정;김병수;윤수정;송종걸
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.453-460
    • /
    • 2016
  • The Gyeong-Ju earthquake in the magnitude of 5.8 on the Richter scaleoccurred in September 12, 2016. Because there are many nuclear power plants (NPP) near the epicenter of the Gyeong-Ju earthquake, the seismic stability of nuclear power plants is becoming a social problem. In order to evaluate the safety of seismically isolated NPP, the seismic response of a NPP subjected to the Gyeong-Ju earthquake was compared with those of 30 sets of artificial earthquakes corresponding to the nuclear standard design spectrum (NSDS). A 2-node model and a simple beam-stick model were used for the seismic analysis of seismically isolated NPP structures. Using 2-node model, the effect of internal temperature rise, decrease of shear stiffness, increase of lateral displacement and decrease of vertical stiffness according to nonlinear behavior of lead-rubber bearing (LRB) were evaluated. The displacement response, the acceleration response, and the shear force response of the seismically isolated nuclear containment structure were evaluated using the simple beam-stick model. It can be observed that the seismic responses of the isolated nuclear structure subjected to Gyeong-Ju earthquake is significantly less than those to the artificial earthquakes corresponding to NSDS.

저감장치에 의해 개선된 고속도로 다경간 강교량의 지진응답 (Seismic Responses of Highway Multiple Span Steel Bridges Retrofitted by Protective Devices)

  • 최은수;김주우
    • 한국공간구조학회논문집
    • /
    • 제4권1호
    • /
    • pp.49-59
    • /
    • 2004
  • 이전 논문에서 미 중부 및 동남부 지역의 전형적인 다경간 단순효와 다경간 강거더 연속교의 지진 응답을 연구하였으며, 이런 교량에서 덱 사이의 충돌과 큰 연성이 요구되는 기둥은 취약하여 손상을 입을 수 있다는 것을 보여주었다. 더구나, 고정 및 가동 교조장치는 강한 지진운동에 쉽게 피해를 입을 수 있다. 이 논문에서는 몇 개의 개선된 고무 베어링, 납-고무 베어링 그리고 제지선을 사용하여 전형적인 다경간 단순교와 다경간 강거더 연속교의 지진 응답을 평가하였다. 납-고무 베어링은 지진에 취약한 전형적인 교량의 응답을 개선하는데 효과적인 방법으로 평가되었다. 고무 베어링은 기둥의 요구량을 줄이지만, 다경간 단순교 강거더 교량에서 덱 사이의 강한 충돌을 유발시킨다. 제지선은 일반적으로 사용되지만 다경간 단순교와 다경간 연속교의 지진에 대한 손상을 절감하는데 중간정도의 효과를 보여주었다.

  • PDF

Mitigation of seismic pounding between RC twin high-rise buildings with piled raft foundation considering SSI

  • Farghaly, Ahmed Abdelraheem;Kontoni, Denise-Penelope N.
    • Earthquakes and Structures
    • /
    • 제22권6호
    • /
    • pp.625-635
    • /
    • 2022
  • High-rise buildings (HRBs) are considered one of the most common structures nowadays due to the population growth, especially in crowded towns. The lack of land in crowded cities has led to the convergence of the HRBs and the absence of any gaps between them, especially in lands with weak soil (e.g., liquefaction-prone soil), but then during earthquakes, these structures may be exposed to the risk of collision between them due to the large increase in the horizontal displacements, which may be destructive in some cases to the one or both of these adjacent buildings. To evaluate methods of reducing the risk of collision between adjacent twin HRBs, this research investigates three vibration control methods to reduce the risk of collision due to five different earthquakes for the case of two adjacent reinforced concrete (RC) twin high-rise buildings of 15 floors height without gap distance between them, founded on raft foundation supported on piles inside a liquefaction-prone soil. Contact pounding elements between the two buildings (distributed at all floor levels and at the raft foundation level) are used to make the impact strength between the two buildings realistic. The mitigation methods investigated are the base isolation, the tuned mass damper (TMD) method (using traditional TMDs), and the pounding tuned mass damper (PTMD) method (using PTMDs connected between the two buildings). The results show that the PTMD method between the two adjacent RC twin high-rise buildings is more efficient than the other two methods in mitigating the earthquake-induced pounding risk.

적층고무형 면진 장치를 갖는 철근콘크리트 건물의 면진 특성 (Base Isolation of the 1/3 Scaled RC Building with the Laminated Rubber Bearings)

  • 장극관;천영수;김동영
    • 콘크리트학회논문집
    • /
    • 제17권6호
    • /
    • pp.975-982
    • /
    • 2005
  • 면진은 현재 설치 공법의 단순함 그리고 지진하중에 대한 진동제어 효과의 탁월성 등으로 인하여 세계 여러 나라에서 강진으로부터 중요한 건물들을 보호하고, 구조물의 장수명화와 내진성능 향상을 도모하기 위한 실무적인 해결책으로서 받아들여지고 있다. 하지만, 국내의 경우, 재해 시 항상 문제가 되는 정보, 통신, 의료체계 및 사회공공 시설물의 피해로 인한 혼란 방지라는 차원에서 면진 구조의 도입이 종종 거론되고는 있으나 아직까지 구체적인 설계기술은 정착되지 못하고 있는 실정이다. 따라서 본 연구에서는 면진 기술의 국내 기반 구축을 위하여 순수 국내기술에 의해 제작된 면진 장치(NRB)를 채용함에 따른 면진 효과를 실험적으로 검증함으로서, 향후 유사 구조 설계를 위한 기초 자료를 제공하고자 하였으며, 철근콘크리트 구조를 대상으로 지진파의 특성 및 지진동의 입력 레벨에 따른 면진 효과가 US 축소 모델 진동대 실험을 통해 제시되었다. 실험 결과, 본 연구에서 적용한 NRB는 응답가속도의 감소와 층 전단력의 감소가 확실히 관측되어 면진 설계의 기본 개념과 일치하게 건물의 주기를 장주기 영역으로 이동시켜 지진동에 의한 하중 효과를 크게 줄일 수 있는 것으로 나타났으며, 면진 효과는 지진파의 특성에 따라 그 정도의 차가 다르게 나타나는 것으로 확인되었고, 장주기 성분이 많이 포함되어 있는 Mexico지진파와 같은 지진동 고려 시 특히 설계허용수평변위 설정에 주의가 필요한 것으로 나타났다.

Adrenergic receptor β2 activation by stress promotes breast cancer progression through macrophages M2 polarization in tumor microenvironment

  • Qin, Jun-fang;Jin, Feng-jiao;Li, Ning;Guan, Hai-tao;Lan, Lan;Ni, Hong;Wang, Yue
    • BMB Reports
    • /
    • 제48권5호
    • /
    • pp.295-300
    • /
    • 2015
  • Stress and its related hormones epinephrine (E) and norepinephrine (NE) play a crucial role in tumor progression. Macrophages in the tumor microenvironment (TME) polarized to M2 is also a vital pathway for tumor deterioration. Here, we explore the underlying role of macrophages in the effect of stress and E promoting breast cancer growth. It was found that the weight and volume of tumor in tumor bearing mice were increased, and dramatically accompanied with the rising E level after chronic stress using social isolation. What is most noteworthy, the number of M2 macrophages inside tumor was up-regulated with it. The effects of E treatment appear to be directly related to the change of M2 phenotype is reproduced in vitro. Moreover, E receptor $ADR{\beta}2$ involved in E promoting M2 polarization was comprehended simultaneously. Our results imply psychological stress is influential on specific immune system, more essential for the comprehensive treatment against tumors. [BMB Reports 2015; 48(5): 295-300]

Sensitivity analysis of variable curvature friction pendulum isolator under near-fault ground motions

  • Shahbazi, Parisa;Taghikhany, Touraj
    • Smart Structures and Systems
    • /
    • 제20권1호
    • /
    • pp.23-33
    • /
    • 2017
  • Variable Curvature Friction Pendulum (VCFP) bearing is one of the alternatives to control excessive induced responses of isolated structures subjected to near-fault ground motions. The curvature of sliding surface in this isolator is varying with displacement and its function is non-spherical. Selecting the most appropriate function for the sliding surface depends on the design objectives and ground motion characteristics. To date, few polynomial functions have been experimentally tested for VCFP however it needs comprehensive parametric study to find out which one provides the most effective behavior. Herein, seismic performance of the isolated structure mounted on VCFP is investigated with two different polynomial functions of the sliding surface (Order 4 and 6). By variation of the constants in these functions through changing design parameters, 120 cases of isolators are evaluated and the most proper function is explored to minimize floor acceleration and/or isolator displacement under different hazard levels. Beside representing the desire sliding surface with adaptive behavior, it was shown that the polynomial function with order 6 has least possible floor acceleration under seven near-field ground motions in different levels.

Seismic performance and optimal design of framed underground structures with lead-rubber bearings

  • Chen, Zhi-Yi;Zhao, Hu;Lou, Meng-Lin
    • Structural Engineering and Mechanics
    • /
    • 제58권2호
    • /
    • pp.259-276
    • /
    • 2016
  • Lead-rubber bearings (LRBs) have been used worldwide in seismic design of buildings and bridges owing to their stable mechanical properties and good isolation effect. We have investigated the effectiveness of LRBs in framed underground structures on controlling structural seismic responses. Nonlinear dynamic time history analyses were carried out on the well-documented Daikai Station, which collapsed during the 1995 Hyogoken-Nanbu earthquake. Influences of strength ratio (ratio of yield strength of LRBs to yield strength of central column) and shear modulus of rubber on structural seismic responses were studied. As a displacement-based passive energy dissipation device, LRBs reduce dynamic internal forces of framed underground structures and improve their seismic performance. An optimal range of strength ratios was proposed for the case presented. Within this range, LRBs can dissipate maximum input earthquake energy. The maximum shear and moment of the central column can achieve more than 50% reduction, whereas the maximum shear displacement of LRBs is acceptable.

Theoretical tensile model and cracking performance analysis of laminated rubber bearings under tensile loading

  • Chen, Shicai;Wang, Tongya;Yan, Weiming;Zhang, Zhiqian;Kim, Kang-Suk
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.75-87
    • /
    • 2014
  • To analyze the tension performance of laminated rubber bearings under tensile loading, a theoretical tension model for analyzing the rubber bearings is proposed based on the theory of elasticity. Applying the boundary restraint condition and the assumption of incompressibility of the rubber (Poisson's ratio of the rubber material is about 0.5 according the existing research results), the stress and deformation expressions for the tensile rubber layer are derived. Based on the derived expressions, the stress distribution and deformation pattern especially for the deformation shapers of the free edges of the rubber layer are analyzed and validated with the numerical results, and the theory of cracking energy is applied to analyze the distributions of prediction cracking energy density and gradient direction. The prediction of crack initiation and crack propagation direction of the rubber layers is investigated. The analysis results show that the stress and deformation expressions can be used to simulate the stress distribution and deformation pattern of the rubber layer for laminated rubber bearings in the elastic range, and the crack energy method of predicting failure mechanism are feasible according to the experimental phenomenon.