• Title/Summary/Keyword: isobutyl chloroformate

Search Result 2, Processing Time 0.02 seconds

Further Kinetic Studies of Solvolytic Reactions of Isobutyl Chloroformate in Solvents of High Ionizing Power Under Conductometric Conditions

  • Lim, Gui Taek;Lee, Yeong Ho;Ryu, Zoon Ha
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.615-621
    • /
    • 2013
  • Solvolyses of isobutyl chloroformate (4) in 43 binary solvent mixtures including highly aqueous media, water, $D_2O$, $CH_3OD$, 2,2,2-trifluoroethanol (TFE) as well as aqueous 1,1,1,3,3,3-hexafluoro-isopropanol (HFIP) solvents were performed at $45^{\circ}C$, in order to further investigate the recent results of D'Souza, M. $J^1$. et al.; solvolyses of 4 are found to be consistent with the proposed mechanism ($Ad_E$). The variety of solvent systems was extended to comprise highly ionizing power solvent media ($Y_{Cl}$ > 2.7 excepted for aqueous fluorinated solvents and pure TFE solvent) to investigate whether a mechanistic change occurs as solvent compositions are varied. However, in case of 18-solvent ranges having aqueous fluorinated solvent systems (TFE-$H_2O$ and HFIP-$H_2O$) and/or having $Y_{Cl}$ > 2.7 solvent systems, the solvent effect on reactivity for those of 4 are evaluated by the multiple regression analysis as competition with $S_N2$ - type mechanism. And in pure TFE and 97 w/w % HFIP solvents with high $Y_{Cl}$ and weak $N_T$, these solvolyses are understood as reactions which proceed through an ionization ($S_N1$) pathway.

Determination of Amitrole in Water Samples by Evaporation and GC/MS (증발법과 GC/MS를 이용한 수질 시료 중의 Amitrole의 분석법 연구)

  • Yoon, So Hee;Hong, Ji Eun;Pyo, Hee Soo;Park, Song Ja
    • Analytical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.483-487
    • /
    • 2003
  • Amitrole is well-known as a non-selective herbicide and it is able to cause contamination of driking water as well as pollution of ground water and surface water. However, it is difficult to extract from water because it has a high solubility for water whereas a low solubility for general organic solvents. This method is described for the determination of amitrole in water samples by GC/MS. After evaporation of 10 mL water sample by a vacuum evaporator, amitrole was derivatized with isobutyl chloroformate (iso-BCF) on room temperature for 15~20 min. As a result, the sensitivity for GCfMS was improved as N-isobutoxycarbonyl amitrole derivative was formed. The linearity of the calibration curve showed good as 0.997. The recoveries were obtained more than 94.9% and relative standard deviations were less than 2.8% at $1.0{\mu}g/L$, $10.0{\mu}g/L$ and $100.0{\mu}g/L$. The limit of detection showed $0.1{\mu}g/L$ with a signal-to-noise ratio (S/N) of 3.