• Title/Summary/Keyword: irrigation water supply

Search Result 300, Processing Time 0.025 seconds

Impact of the Geochemical Characteristics and Potential Contaminants Source of Surrounding Soil on Contamination of a Reservoir in an Island (II) - Appraisal of flow categorized by Incursion Using Rainfall-Runoff Model - (주변토양의 지구화학적 특성과 잠재적 오염원이 도서지역 저수지의 오염부하에 미치는 영향(II) - 강우 유출 모형을 이용한 유입경로별 유출량 평가 -)

  • Park, Sun-Hwan;Park, Wan-Sub;Jun, Young-Bong;Kim, Chang-Gyun;Kim, Sung-Gou;Kang, Seon-Hong;Chang, Yoon-Young;Jeong, Jeong-Ho;Jung, Jong-Ahm
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.3
    • /
    • pp.215-222
    • /
    • 2010
  • This research aims to gain the result of assessment of inflow categorized by runoff path using DIROM (Daily Irrigation Reservoir Operation Model) for Baengnyeong-myeon reservior which was built for residents of Baengnyeong island to solve the shortage of drinking water and stable supply of domestic water. The simulation results of DIROM and actual hydrograph of the reservoir show very low correlation with geological characteristics. The simulation results by DIROM after adjusting with modified Tank III model which considers all outflow from Tank II model as interflow among 3 level tanks show good correlation of its regional runoff and inflow characteristics with $R^2$=0.9058. In the study area, diffluence of 37% of rain fall of the study year has been simulated, which shows low result compared to the average river runoff of national water resource. In addition, 34.5% of total inflow to the study reservoir is mainly interflow and baseflow among expected several channels.

Change in Stream Morphology after Gongneung Weir 2 Removal (공릉2보 철거에 따른 하천형태학적 변화)

  • Choi, Sung-Uk;Lee, Hea-Eun;Yoon, Byung-Man;Woo, Hyo-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.5
    • /
    • pp.425-432
    • /
    • 2009
  • Gongneung Weir 2 was built in 1970s to supply water for irrigation. For a long time, the weir was left uncared because of the land use change of the nearby area. The weir is 1.5 m high, and the stream in which the weir was installed has bed materials of fine sands to fine gravels. In 2006, the local government and residents agreed on uninstalling the weir, and the weir was removed completely on April 14. This paper reports the results of three field investigations for the study of the stream morphology change after the weir removal. Changes in grain size distribution, bed elevation, and cross section before and after the weir removal are provided and discussed. Net amount of sediment deposits within 1 km reach of the stream is estimated, and the results illustrates that the sediment process, leading to an equilibrium of the bed, progressed very swiftly, namely within 45 days.

A Method for Optimal Operation of Irrigation Supply using Multi Water Resources (다중수원을 활용한 관수공급 최적 운영에 관한 방법)

  • Gwon, Yong Hyeon;Jung, Seung Kwon;Lee, Su Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.225-225
    • /
    • 2017
  • 농촌지역 관수공급의 대부분은 지하수, 하천, 저수지 등 주변의 다중수원을 활용하고 있지만, 지속적인 가뭄 발생시 농업용수의 부족현상을 일으키며, 농작물의 생산량과 품질에 많은 영향을 주는 원인이 된다. 밭작물의 경우, 재배작물별로 적절한 재배환경조성은 작물의 생산성에 매우 큰 영향을 주므로 생육에 필요한 알맞은 토양수분을 유지를 위해 적절한 관수공급이 중요하다. 이러한 농촌지역의 물부족 현상을 대비하여 효율적인 관수공급으로 인한 물관리와 대체 수자원의 확보 및 활용방안이 요구되며, 대체 수자원을 저류하여 관수공급을 효과적으로 사용하는 방법들이 다각적으로 검토되고 있다. 특히, 빗물을 집수하여 재사용 하여 작물을 재배하는 방법이 친환경적일 뿐만 아니라, 수자원을 재활용하기 때문에 비용적인 측면에서 가장 효율적이므로 이러한 빗물을 저류조에 집수하여 효과적으로 재사용 하여 관수공급하는 방법에 대한 필요성이 대두되고 있는 실정이다. 이에, 본 연구에서는 농촌지역에서 작물재배를 하기 위해 관수공급시 관정의 수량이 충분한 평상시는 관정펌프로부터 물을 길러 관수를 하도록 하였고, 관정의 수량이 부족한 비상시(가뭄)와 강우 예측시에는 저류조로부터 관수를 하도록 가뭄시나리오와 강우시나리오를 구축하였다. 효율적인 관수공급 운영을 위해 기상청의 7일 기상예보 자료를 획득하고 강우분석을 통해 저류량 예측을 하고 작물별 일관수공급량을 계산하여 물부족이 일어나지 않도록 최적의 운영방법론을 구축하였다. 이를 통해, 다중수원으로부터 확보된 수원을 저류조에 저장하여 가뭄과 같은 비상 상황에서 농업용수로 사용이 가능하도록 함으로써 비상 상황에서 농작물의 피해를 최소화할 수 있을 것으로 판단된다.

  • PDF

Exploring the Complexities of Dams' Impact on Transboundary Flow: A Meta-Analysis of Climate and Basin Factors

  • Abubaker Omer;Hyungjun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.177-177
    • /
    • 2023
  • The impacts of dams on transboundary flow are complex and challenging to project and manage, given the potential moderating influence of a broad range of anthropogenic and natural factors. This study presents a global meta-analysis of 168 studies that examines the effect magnitude of dams on downstream seasonal, annual flow, and hydrological extremes risk on 39 hotspot transboundary river basins. The study also evaluates the impact of 13 factors, such as climate, basin characteristics, dams' design and types, level of transboundary cooperation, and socioeconomic indicators, on the heterogeneity of outcomes. The findings reveal that moderators significantly influence the impact of dams on downstream flow, leading to considerable heterogeneity in outcomes. Transboundary cooperation emerges as the key factor that determines the severity of dams' effect on both dry and wet season's flows at a significance level of 0.01 to 0.05, respectively. Specifically, the presence of water-supply and irrigation dams has a significant (0.01) moderating effect on dry-season flow across basins with high transboundary cooperation. In contrast, for wet-season flow, the basin's vulnerability to climate extremes is associated with a large negative effect size. The various moderators have varying degrees of influence on the heterogeneity of outcomes, with the aridity index, population density, GDP, and risk level of hydro-political tension being the most significant factors for dry-season flow, and the risk level of hydro-political tension and basin vulnerability to climate extremes being the most significant for wet-season flow. The results suggest that transboundary cooperation is crucial for managing the impacts of dams on downstream flow, and that various other factors, such as climate, basin characteristics, and socioeconomic indicators, have significant moderating effects on the outcomes. Thus, context-specific approaches are necessary when predicting and managing the impacts of dams on transboundary flow.

  • PDF

Multi-functional Benefits & Costs Analysis of Tide Land Reclamation Project and Development Guidelines in the Future (간척사업(干拓事業)의 다기능적(多機能的) 편익(便益)-비용분석(費用分析)과 발전방향(發展方向))

  • Lim, Jae Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.32 no.2
    • /
    • pp.107-126
    • /
    • 2005
  • The most limited production resource in Korea is land. During the period from 1995 to 2002, annual farm land area of 17,600ha have been converted to urban and industrial land. The self-sufficiency rate of rice, Korean staple food, is expected to be decreased from 97.5% in 2003 to 60-70% in 2020. Under such conditions, this study is aimed at first identifying multi-functional benefits of the reclamation projects such as agricultural production, industrial water supply, urban land supply, transportation effects, sightseeing effects and environmental values with and without the projects. To carry out the objectives, three existing tideland reclamation projects such as Daeho, Kumgang and Yongsangang irrigation project stage II were evaluated and Saemangeum tideland reclamation project which was jointly revaluated by environmental NGO and Govn't appointed specialists in 2000 was reviewed. According to this study results, tide land reclamation projects were showed financially and economically feasible and environmentally sustainable. The joint cost like estuary dam should be allocated based on the multi-functional benefits of the projects. To allocate the joint cost, legal and institutional improvement should adapt the joint cost allocation method as the specific cost-remaining benefit method. Korea has more than 402,000 ha of tidal flat of which 76,396ha have been reclaimed in 2003. To meet food security and to cope with shortage of land, phil-environmental reclamation projects should be continuously implemented and necessary tidal flats for protecting environmental ecosystem should be remained according to the detail survey results of reclaimable resources.

  • PDF

An Analysis of the Rice Situation in Nicaragua for Improving National Production.

  • Chang-Min Lee;Oporta Juan;Ho-Ki Park;Hyun-Su Park;Jeonghwan Seo;Man-Kee Baek;Jae-Ryoung Park;O-Young Jeong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.90-90
    • /
    • 2022
  • Nicaragua is located in Central America, climatic conditions are considered tropical dry forest. Statistics reflex that in Nicaragua exits 24,000 rice farmers. National rice production only covers 73% of the national consumption. It exists two sowing system: irrigation and rainfed. Varieties used in both systems are mid-late maturity (120-135 days), there are 14 released varieties for irrigation, eight for rainfed, and eight landraces used in rainfed. The current breeding system (introduction of lines from Colombia) has increased the national production, however, has some limitation due to the lack of enough variability, reducing the proability of finding good genotypes and therefore the possibility of satisfying 100% of the demand. The purpose of this study was to analyze the problems that must be resolved in the short and long term to improve rice productivity in Nicaragua. In this paper we explain some proposal for an improvement plan. The selection of varieties with high adaptability to various cultivation environmental conditions it is necessary, also to thoroughly manage seed purity to supply certified seeds. In rice cultivation technology, it needs to improve seedling standing and weeding effect by improving soil leveling and water-saving cultivation technology. Also, proper fertilization and planting density must be established in irrigated and rain-fed areas. Furthermore, capacity must be strengthened by collecting and training with the most recent agricultural technology information, as well as by revitalizing the union rather than the individual farmer. It is necessary to develop varieties highly adaptable to the Nicaraguan cultivation environment, as well as to expand irrigation facilities and cultivation technology suitable for weather conditions in rain-fed areas. Last, it is necessary to maintain the consistency of agricultural policy for continuous and stable rice production in response to climate change events such as drought or intermittent heavy rain.

  • PDF

A Study on Traveling Characteristics and Evaluation about Noise of Hydraulic Turbine Dynamo in Dam (댐 수차 발전기 소음의 전달특성과 평가에 관한 연구)

  • Yun, Jae-Hyun;Kook, Jung-Hoon;Kim, Jae-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.705-711
    • /
    • 2008
  • In case of the domestic condition, as the initiating from Sumjin River Dam, total 14 units of multipurpose dams had been constructed in 1965 for the roles of flood control, waterpower generation, irrigation, water supply, industrial water supply. In the case of such multipurpose dam, it produces electric energy by converting the potential energy utilizing its head and quantity of the water into kinetic energy. However, in this process, since during the time when the turbine connected to the hydraulic turbine dynamo revolves and there occurs a loud noise, it brings the physical, mental bad influences to those people also a decline of an effective working efficiency. On such point of view, after selection of various 16 measurement points, this study has measured and analyzed the travelling characteristics of noise generated at the hydraulic turbine dynamo in Daechung Dam, and also has evaluated the degree of indoor noise using the evaluation index such as PSIL, NC. As the result of noise-evaluation, in case of Daechung Dam, since the noise damage grade appears very seriously at various spaces, it is considering that its soundproof measure would be necessitated keenly. Also, it is considered that such data could be utilized as the valuable material hereafter for establishment of an efficient noise-reduction countermeasure and a comfortable working environment for the hydraulic turbine dynamo plant.

Water Supply Alternatives for Drought by Weather Scenarios Considering Resilience: Focusing on Naju Reservoir (회복탄력성을 고려한 기상 시나리오별 가뭄 용수 공급방안: 나주호를 중심으로)

  • Park, JinHyun;Go, JeaHan;Jo, YoungJun;Jung, KyungHun;Sung, MuHong;Jung, HyoungMo;Park, HyunKyu;Yoo, SeungHwan;Yoon, KwangSik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.115-124
    • /
    • 2018
  • Resilience has been widely used in various fields including design and operation of infrastructures. The resilient infrastructures not only reduce the damage scale of various disasters but also reduce the time and cost required for restoration. However, resilience rarely applied to promote efficient management of agricultural infrastructures. Recently, drought is an aggravating disaster by climate change and need countermeasures. Therefore, we tried to demonstrate evaluating measures in case of drought under consideration of resilience. This study applied the robustness-cost index (RCI) to evaluate alternative solution of the supply problem of a large agricultural reservoir under drought conditions. Four structural alternatives were selected to estimate the robustness index (RI) and the cost index (CI) to obtain the RCI values. Structural alternatives are classified into temporary measures and permanent measures. Temporary measures include the development of a tube wells and the installation of the portable pump, while the permanent measures include the installation of a pumping stations and the pumping water to the reservoir (Yeongsan River-Naju reservoir). RCI values were higher in permanent measures than those of temporary measures. Initial storage of the reservoir also affected RCI values of the drought measures. Permanent measures installation and management of early stage of the reservoir storage shortage was identified as the most resilient system.

Influence of Drought Stress Treatment on Saponarin Content during the Growing Period of Barley Sprouts (새싹보리 재배기간 중 수분스트레스 처리가 사포나린 함량에 미치는 영향)

  • Yoon, Young-Eun;Kim, Song Yoeb;Choe, Hyeonji;Cho, Ju Young;Seo, Woo Duck;Kim, Young-Nam;Lee, Yong Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.290-294
    • /
    • 2021
  • BACKGROUND: Barley sprouts contain a large number of secondary metabolites such as polyphenols, saponarin, and policosanols. The synthesis of such secondary metabolites occurs as a defense mechanism against external environmental stresses. In particular, it has been widely known that drought stress (DS) increases the content of flavonoids in plants. The objective of this study was to investigate the effects of drought stress treatment on the saponarin content in barley sprouts during the growing period. METHODS AND RESULTS: In this study, changes in saponarin content with different DS exposure periods and times were evaluated under the hydroponic system. For establishing different DS treatment periods, water supply was stopped for 1, 2, and 3 days, once leaf length was at 10 cm. To control different DS treatment times, water supply was stopped for 2 days, once leaf lengths were 5, 10, and 15 cm. As a result, the water potential of barley sprouts decreased from -0.8 MPa (before DS treatment) to -1.2, -2.4, and -3.2 MPa (after DS treatment), and reversely recovered to -0.8 MPa after re-irrigation. When 10 cm leaves were subjected to DS for 1 and 2 days, the saponarin content increased by 12 and 10%, respectively, while it increased by 19% when DS was applied to the 5 cm leaves. CONCLUSION(S): The results of this study suggest that drought stress at the early stage of growth (5 cm) is most helpful to increase the saponarin content of barley sprouts.

Development of Strategies to Improve Water Quality of the Yeongsan River in Connection with Adaptation to Climate Change (기후변화의 적응과 연계한 영산강 수질개선대책 개발)

  • Yong Woon Lee;Won Mo Yang;Gwang Duck Song;Yong Uk Ryu;Hak Young Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.3
    • /
    • pp.187-195
    • /
    • 2023
  • Almost all of the water from agricultural dams located to the upper of the Yeongsan river is supplied as irrigation water for farmland and thus is not discharged to the main stream of the river. Also, most of the irrigation water does not return to the river after use, adding to the lack of flow in the main stream. As a result, the water quality and aquatic health of the river have become the poorest among the four major rivers in Korea. Therefore, in this study, several strategies for water quality improvement of the river were developed considering pollution reduction and flow rate increase, and their effect analysis was performed using a water quality model. The results of this study showed that the target water quality of the Yeongsan river could be achieved if flow increase strategies (FISs) are intensively pursued in parallel with pollution reduction. The reason is because the water quality of the river has been steadily improved through pollution reduction but this method is now nearing the limit. In addition, rainfall-related FISs such as dam construction and water distribution adjustment may be less effective or lost if a megadrought continues due to climate change and then rainfall does not occur for a long time. Therefore, in the future, if the application conditions for the FISs are similar, the seawater desalination facility, which is independent of rainfall, should be considered as the priority installation target among the FISs. The reason is that seawater desalination facilities can replace the water supply function of dams, which are difficult to newly build in Korea, and can be useful as a climate change adaptation facility by preventing water-related disasters in the event of a long-term megadrought.