• Title/Summary/Keyword: irrigation management

검색결과 634건 처리시간 0.028초

배액전극제어법 적용시 배액 이동매개체 선발 (Evaluation of Solution Mediator in Irrigation System Controlled by Drainage Level Sensor)

  • 김성은;심상연;이상돈;김영식
    • 농업생명과학연구
    • /
    • 제44권6호
    • /
    • pp.23-26
    • /
    • 2010
  • 펄라이트자루를 사용한 수경재배에서 급액관리방식의 일종인 배액전극제어법에 필요한 배액 이동매개체를 선발하기 위해서 시판되고 있는 친수성 매트 중에서 극세사, 융, 면 등의 배양액 흡수속도를 분석했다. 또한, 선택된 매트가 배액전극제어법을 적용하였을 때에도 높은 흡수속도를 갖는지 알아보기 위해 연구를 수행하였다. 실험결과 면이 가장 수분보유력이 뛰어났으며, 배액전극제어법을 적용했을 때에도 가장 적합한 것으로 나타났다.

소규모 논지대의 관개회귀수량 실측조사 및 분석 (Irrigation Return Flow Measurements and Analysis in a Small Size Paddy Area)

  • 정상옥;박기중
    • 한국수자원학회논문집
    • /
    • 제37권7호
    • /
    • pp.517-526
    • /
    • 2004
  • 농업용수는 국가의 수자원 관리에서 매우 중요한 부분이다. 관개회귀수는 농지에 관개한 수량 중에서 다시 하천으로 회귀되는 양이며 관개회귀수량을 정확하게 추정하는 것은 수자원 개발 계획과 관리에 있어서 매우 중요하다. 본 연구는 낙동강유역 내의 소규모 논지대에 조사지구를 선정하여 2003년도 영농기간 동안 농업용수 공급량과 배수량을 조사 분석하여 회귀율을 산출하고, 이를 향후 수자원계획의 기초자료로 활용하기 위하여 수행하였다. 조사대상 지구인 경북 청도 녹명지구의 관개기간 중 신속회귀율은 30.2%, 지연 회귀율은 23.5%로 전체 회귀율은 53.7%로 나타났다.

흉부둔상에 의한 식도파열의 성공적인 보존적 치료 (A successful conservative management of traumatic thoracic esophageal rupture)

  • 노태훈
    • Journal of Chest Surgery
    • /
    • 제21권1호
    • /
    • pp.169-174
    • /
    • 1988
  • Thoracic esophageal rupture caused by blunt trauma is often not recognized until late because of the vague symptoms in the initial state as well as its rare incidence, which can easily lead to fulminant mediastinitis with frequent fatal outcome. Once extensive mediastinitis occurs, the primary surgical repair of the esophageal tear is considered to be practically impossible. Various methods have been proposed for the management of these desperately ill patients, but no one provides an acceptable good result yet. The purpose of this article is to report the successful result obtained in the treatment of a patient with fulminant mediastinitis from traumatic esophageal rupture by continuous transesophageal irrigation. A 27 year-old male patient was brought to the emergency room of our hospital complaining of dyspnea and chest pain after blunt trauma. The diagnosis of esophageal rupture in the thorax was made late, about 46 hours after the initial injury, when mediastinitis had already progressed. The transesophageal irrigation method was immediately instituted which consisted of profuse transesophageal irrigation of the mediastinum with orally ingested fluid and/or by Levin tube, positioned proximal to the site of the rupture, and drainage of the irrigation fluid by thoracoscopically accurately positioned chest tubes connected to a well suctioning system. With subsiding inflammatory signs and symptoms, the esophagogram, obtained 54 days after the treatment, showed no evidence of the mediastinal leakage of contrast material which contrasted previous esophagograms with definitive dye collections in the mediastinum. Additional endoscopic finding confirmed complete healing of the esophageal mucosa, previously ruptured. He has been followed up without any problem until recently, 6 months after discharge.

  • PDF

Agricultural Irrigation Control using Sensor-enabled Architecture

  • Abdalgader, Khaled;Yousif, Jabar H.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권10호
    • /
    • pp.3275-3298
    • /
    • 2022
  • Cloud-based architectures for precision agriculture are domain-specific controlled and require remote access to process and analyze the collected data over third-party cloud computing platforms. Due to the dynamic changes in agricultural parameters and restrictions in terms of accessing cloud platforms, developing a locally controlled and real-time configured architecture is crucial for efficient water irrigation and farmers management in agricultural fields. Thus, we present a new implementation of an independent sensor-enabled architecture using variety of wireless-based sensors to capture soil moisture level, amount of supplied water, and compute the reference evapotranspiration (ETo). Both parameters of soil moisture content and ETo values was then used to manage the amount of irrigated water in a small-scale agriculture field for 356 days. We collected around 34,200 experimental data samples to evaluate the performance of the architecture under different agriculture parameters and conditions, which have significant influence on realizing real-time monitoring of agricultural fields. In a proof of concept, we provide empirical results that show that our architecture performs favorably against the cloud-based architecture, as evaluated on collected experimental data through different statistical performance models. Experimental results demonstrate that the architecture has potential practical application in a many of farming activities, including water irrigation management and agricultural condition control.

Performance of Drip Irrigation System in Banana Cultuivation - Data Envelopment Analysis Approach

  • Kumar, K. Nirmal Ravi;Kumar, M. Suresh
    • Agribusiness and Information Management
    • /
    • 제8권1호
    • /
    • pp.17-26
    • /
    • 2016
  • India is largest producer of banana in the world producing 29.72 million tonnes from an area of 0.803 million ha with a productivity of 35.7 MT ha-1 and accounted for 15.48 and 27.01 per cent of the world's area and production respectively (www.nhb.gov.in). In India, Tamil Nadu leads other states both in terms of area and production followed by Maharashtra, Gujarat and Andhra Pradesh. In Rayalaseema region of Andhra Pradesh, Kurnool district had special reputation in the cultivation of banana in an area of 5765 hectares with an annual production of 2.01 lakh tonnes in the year 2012-13 and hence, it was purposively chosen for the study. On $23^{rd}$ November 2003, the Government of Andhra Pradesh has commenced a comprehensive project called 'Andhra Pradesh Micro Irrigation Project (APMIP)', first of its kind in the world so as to promote water use efficiency. APMIP is offering 100 per cent of subsidy in case of SC, ST and 90 per cent in case of other categories of farmers up to 5.0 acres of land. In case of acreage between 5-10 acres, 70 per cent subsidy and acreage above 10, 50 per cent of subsidy is given to the farmer beneficiaries. The sampling frame consists of Kurnool district, two mandals, four villages and 180 sample farmers comprising of 60 farmers each from Marginal (<1ha), Small (1-2ha) and Other (>2ha) categories. A well structured pre-tested schedule was employed to collect the requisite information pertaining to the performance of drip irrigation among the sample farmers and Data Envelopment Analysis (DEA) model was employed to analyze the performance of drip irrigation in banana farms. The performance of drip irrigation was assessed based on the parameters like: Land Development Works (LDW), Fertigation costs (FC), Volume of water supplied (VWS), Annual maintenance costs of drip irrigation (AMC), Economic Status of the farmer (ES), Crop Productivity (CP) etc. The first four parameters are considered as inputs and last two as outputs for DEA modelling purposes. The findings revealed that, the number of farms operating at CRS are more in number in other farms (46.66%) followed by marginal (45%) and small farms (28.33%). Similarly, regarding the number of farmers operating at VRS, the other farms are again more in number with 61.66 per cent followed by marginal (53.33%) and small farms (35%). With reference to scale efficiency, marginal farms dominate the scenario with 57 per cent followed by others (55%) and small farms (50%). At pooled level, 26.11 per cent of the farms are being operated at CRS with an average technical efficiency score of 0.6138 i.e., 47 out of 180 farms. Nearly 40 per cent of the farmers at pooled level are being operated at VRS with an average technical efficiency score of 0.7241. As regards to scale efficiency, nearly 52 per cent of the farmers (94 out of 180 farmers) at pooled level, either performed at the optimum scale or were close to the optimum scale (farms having scale efficiency values equal to or more than 0.90). Majority of the farms (39.44%) are operating at IRS and only 29 per cent of the farmers are operating at DRS. This signifies that, more resources should be provided to these farms operating at IRS and the same should be decreased towards the farms operating at DRS. Nearly 32 per cent of the farms are operating at CRS indicating efficient utilization of resources. Log linear regression model was used to analyze the major determinants of input use efficiency in banana farms. The input variables considered under DEA model were again considered as influential factors for the CRS obtained for the three categories of farmers. Volume of water supplied ($X_1$) and fertigation cost ($X_2$) are the major determinants of banana farms across all the farmer categories and even at pooled level. In view of their positive influence on the CRS, it is essential to strengthen modern irrigation infrastructure like drip irrigation and offer more fertilizer subsidies to the farmer to enhance the crop production on cost-effective basis in Kurnool district of Andhra Pradesh, India. This study further suggests that, the present era of Information Technology will help the irrigation management in the context of generating new techniques, extension, adoption and information. It will also guide the farmers in irrigation scheduling and quantifying the irrigation water requirements in accordance with the water availability in a particular season. So, it is high time for the Government of India to pay adequate attention towards the applications of 'Information and Communication Technology (ICT) and its applications in irrigation water management' for facilitating the deployment of Decision Supports Systems (DSSs) at various levels of planning and management of water resources in the country.

복합영농 관개지구의 배수량 모의 모형의 개발 (Surface Drainage Simulation Model for Irrigation Districts Composed of Paddy and Protected Cultivation)

  • 송정헌;강문성;송인홍;황순호;박지훈;안지현
    • 한국농공학회논문집
    • /
    • 제55권3호
    • /
    • pp.63-73
    • /
    • 2013
  • The objectives of this study were to develop a hydrologic simulation model to estimate surface drainage for irrigation districts consisting of paddy and protected cultivation, and to evaluate the applicability of the developed model. The model consists of three sub-models; agricultural supply, paddy block drainage, and protected cultivation runoff. The model simulates daily total drainage as the sum of paddy field drainage, irrigation canal drainage, and protected cultivation runoff at the outlets of the irrigation districts. The agricultural supply sub-model was formulated considering crop water requirement for growing seasons and agricultural water management loss. Agricultural supply was calculated for use as input data for the paddy block sub-model. The paddy block drainage sub-model simulates paddy field drainage based on water balance, and irrigation canal drainage as a fraction of agricultural supply. Protected cultivation runoff is calculated based on NRCS (Natural Resources Conservation Service) curve number method. The Idong reservoir irrigation district was selected for surface drainage monitoring and model verification. The parameters of model were calibrated using a trial and error technique, and validated with the measured data from the study site. The model can be a useful tool to estimate surface drainage for irrigated districts consisting of paddy and protected cultivation.

Responses of Soybean Cultivars to Excessive Soil Moisture Imposed at Different Growth Stages

  • Seong, Rak-Chun;Sohn, Joo-Yong;Shim, Sang-In
    • 한국작물학회지
    • /
    • 제45권5호
    • /
    • pp.282-287
    • /
    • 2000
  • Soybean [Glycine max (L.) Merrill] crops, grown in a rice soybean rotation, can suffer when grown in soil with excessive moisture. The objective of this work were to determine the reduction in growth and yield, responses of vegetative and reproductive growth of soybean to excessive soil moisture achieved by prolonged irrigation. Responses of different cultivars were determined at growth stages from V6 to R8 to clarify the sensitive growth stages or characteristics to excessive soil moisture. Cultivar differences in response to excessive soil moisture condition were conspicuous in seed dry weight and harvest index (HI) but not in the response of seed number or pod number per plant. The timing of irrigation causing the condition of excessive soil moisture influenced the vegetative or reproductive traits. Soybean plants were more affected by irrigation commencing at the pre-flowering than at the post-flowering stage. Post-flowering irrigation did not reduce growth of vegetative organs significantly; in fact the growth of stems and leaves was facilitated by the prolonged irrigation commencing at flowering. Differences between cultivar response to prolonged irrigation were assumed to relate to the reduced amount of assimilates translocated to the reproductive organ.

  • PDF

관개기 곡간지 유역 필지논에서의 비점원오염물질 유출특성 (Characteristics of Non-Point Sources Pollutant Loads at Paddy Plot Located at the Valley Watershed during Irrigation Periods)

  • 한국헌
    • 한국관개배수논문집
    • /
    • 제18권1호
    • /
    • pp.94-102
    • /
    • 2011
  • The aim of this study was to evaluate the load of non-point sources pollutant at a paddy plot located at the valley watershed during irrigation period. Irrigation, runoff and water quality data in the paddy plot were analyzed periodically from June 1 to October 31 in 2005. The observed amount of precipitation, irrigation, runoff for the experimental paddy plot during the irrigation period was 1,297.8, 223.2, and 825.4mm, respectively. Total-N concentrations ranged from 3.73 to 18.10mg/L, which was generally higher than the quality standard of agricultural water (1.0mg/L). Total-P concentrations ranged from 0.111 to 0.243mg/L and the average was 0.139mg/L. The observed runoff pollutants loadings from the paddy plot were measured as 34.4 kg/ha for T-N, 1.0 kg/ha for T-P and 213.8 kg/ha for SS. The non-point sources pollutant load in drainage water depends on rainfall and surface drainage water amount from the paddy plot. We are considering that these results were affected by rainfall as well as hydrological condition, soil management, whether or not fertilizer application, cropping, rice straw and plowing.

  • PDF

Opportunities for Agricultural Water Management Interventions in the Krishna Western Delta - A case from Andhra Pradesh, India

  • Kumar, K. Nirmal Ravi
    • Agribusiness and Information Management
    • /
    • 제9권1호
    • /
    • pp.7-17
    • /
    • 2017
  • Agricultural water management has gained enormous attention in the developing world to alleviate poverty, reduce hunger and conserve ecosystems in small-scale production systems of resource-poor farmers. The story of food security in the $21^{st}$ century in India is likely t o be closely linked to the story of water security. Today, the water resource is under severe threat. The past experiences in India in general and in Andhra Pradesh in particular, indicated inappropriate management of irrigation has led to severe problems like excessive water depletion, reduction in water quality, water logging, salinization, marked reduction in the annual discharge of some of the rivers, lowering of ground water tables due to pumping at unsustainable rates, intrusion of salt water in some coastal areas etc. Considering the importance of irrigation water resource efficiency, Krishna Western Delta (KWD) of Andhra Pradesh was purposively selected for this in depth study, as the farming community in this area are severely affected due to severe soil salinity and water logging problems and hence, adoption of different water saving crop production technologies deserve special mention. It is quite disappointing that, canals, tube wells and filter points and other wells could not contribute much to the irrigated area in KWD. Due to less contribution from these sources, the net area irrigated also showed declining growth at a rate of -6.15 per cent. Regarding paddy production, both SRI and semi-dry cultivation technologies involves less irrigation cost (Rs. 2475.21/ha and Rs. 3248.15/ha respectively) when compared to transplanted technology (Rs. 4321.58/ha). The share of irrigation cost in Total Operational Cost (TOC) was highest for transplanted technology of paddy (11.06%) followed by semi-dry technology (10.85%) and SRI technology (6.21%). The increased yield and declined cost of cultivation of paddy in SRI and semi-dry production technologies respectively were mainly responsible for the low cost of production of paddy in SRI (Rs. 495.22/qtl) and semi-dry (Rs. 532.81/qtl) technologies over transplanted technology (Rs. 574.93/qtl). This clearly indicates that, by less water usage, paddy returns can be boosted by adopting SRI and semi-dry production technologies. Both the system-level and field-level interventions should be addressed to solve the issues/problems of water management. The enabling environment, institutional roles and functions and management instruments are posing favourable picture for executing the water management interventions in the State of Andhra Pradesh in general and in KWD in particular. This facilitates the farming community to harvest good crop per unit of water resource used in the production programme. To achieve better results, the Farmers' Organizations, Water Users Associations, Department of Irrigation etc., will have to aim at improving productivity per unit of water drop used and this must be supported through system-wide enhancement of water delivery systems and decision support tools to assist farmers in optimizing the allocation of limited water among crops, selection of crops based on farming situations, and adoption of appropriate alternative crops in drought years.

스마트 관개 시스템을 위한 토양 수분 제어시스템 개발 (Development of Soil Moisture Controlling System for Smart Irrigation System)

  • 김종순;최원식;정기열;이상훈;박종민;권순구;김동현;권순홍
    • 한국산업융합학회 논문집
    • /
    • 제21권5호
    • /
    • pp.227-234
    • /
    • 2018
  • The smart irrigation system using ICT technology is crucial for stable production of upland crops. The objective of this study was to develop a smart irrigation system that can control soil water, depending on irrigation methods, in order to improve crop production. In surface irrigation, three irrigation methods (sprinkler irrigation (SI), surface drip irrigation (SDI), and fountain irrigation (FI)) were installed on a crop field. The soil water contents were measured at 10, 20, 30, and 40 cm depth, and an automatic irrigation system controls a valve to maintain the soil water content at 10 cm to be 30%. In subsurface drip irrigation (SSDI), the drip lines were installed at a depth of 20 cm. Controlled drainage system (CDS) was managed with two ground water level (30 cm and 60 cm). The seasonal irrigation amounts were 96.4 ton/10a (SDI), 119.5 ton/10a (FI), and 113 ton/10a (SI), respectively. Since SDI system supplied water near the root zone of plants, the water was saved by 23.9% and 17.3%, compared with FI and SI, respectively. In SSDI, the mean soil water content was 38.8%, which was 10.8% higher than the value at the control treatment. In CDS, the water contents were greatly affected by the ground water level; the water contents at the surface zone with 30 cm ground water level was 9.4% higher than the values with 60 cm ground water level. In conclusion, this smart irrigation system can reduce production costs of upland crops.