• Title/Summary/Keyword: irrigated water

Search Result 287, Processing Time 0.032 seconds

Analysis of spatial characteristics and irrigation facilities of rural water districts

  • Mikyoung Choi;Kwangya Lee;Bosung Koh;Sangyeon Yoo;Dongho Jo;Minchul La;Sangwoo Kim;Wonho Nam
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.903-916
    • /
    • 2023
  • This study aims to establish basic data for efficient management of rural water by analyzing regional irrigation facilities and benefitted areas in the statistical yearbook of land and water development for agriculture at the watershed level. For 511 domestic rural water use areas, water storage facilities (reservoirs, pumping & drainage stations, intake weirs, infiltration galleries, and tube wells) are spatially distributed, and the benefitted areas provided at the city/county level are divided by water use area to provide agricultural water supply facilities. The characteristics of rural water district areas such as benefitted area, were analyzed by basin. The average area of Korea's 511 rural water districts is 19,638 ha. The average benefitted area by rural water district is 1,270 ha, with the Geum River basin at 2,220 ha and the Yeongsan River basin at 1,868 ha, which is larger than the overall average. The Han River basin at 807 ha, the Nakdong River basin at 1,121 ha, and the Seomjing River basin at 938 ha are smaller than the overall average. The results of this basic analysis are expected to be used to set the direction of various supply and demand management projects that take into account the rational and scientific use and distribution of rural water and the characteristics of water use areas by presenting a quantitative definition of Korea's agricultural water districts.

Research on the Ground Water Developement in the Region of Choong Nam Province (충남지역의 지하수개발에 관한 조사)

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1827-1831
    • /
    • 1969
  • Resulties of research on the capacity of ground water of 994 concrete-pipe-wells and 97 infiltration-gallerys in ground-water-developement-works region executed from March to Julyin 1969, in Choong Chung Nam Do, and research on the quality of ground water for 88 wells for home-use around of River Geum Area, are as fellows: (1) Thickness of aquifer is no more than 2.85m averagely even at river-overflowed plain, alluvial plain and valley plain area that are estimated to contain ground water mostly. And so, it is guessed that ground water capacity is not much especially. (2) Soil of aquifer of the above area is sand or gravel and it is estimated to be good for ground water developement and its mean permeability coefficient is bout $2.5{\times}10^{-3}$(m/sec), and its porosity is about 33.9%. (3) The quality of ground water is good for irrigation water exception of delta plain area. Warm water plan is to need for irrigation water when water temperature is less than 19 degrees below zero. (4) Prospect of ground water developement, judging from quality and quantity, expects to lay infiltration gallery under the ground at river bed in order to utilize under-flow-water of river bed, river-overflowed plain, alluvial plain and valley plain that ground level is less than 50m. (5) Collectable water volume of under-flow-water of river bed is about 450 to $750m^3/day$ to be able to irrigate 3ha to 5ha of the cultivated land in case that infiltration gallery length is 50m and its depth is about 5m. (6) Collectable water volume at river-overflowed plain, alluvial plain and valley plain area, is estimated $150m^3/day$ to be able to irrigated 1ha of the cultivated land.

  • PDF

The Study on the Effects of the Economical Use of Irrigation Water by Different Irrgation Periods and Its Methods on the Growth, Yield and the Factors of Rice Plants. (절수의 시기 및 방법의 차이가 수도생육 수량과 기타 실용형태질 미치는 영향)

  • 이창구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.10 no.1
    • /
    • pp.1388-1393
    • /
    • 1968
  • Higher yield in rice paddies is greatly dependent on adequately balanced and timely supply of water. A majority of rice paddy in Korea is generally irrigated by rainfall, but in many cases it has to be supplemented by artificial irrigation for optimum rice culture. Although the water requirement of rice plant is far higher than that of other crops, submerged condition of rice paddy is not necessarily required. The moisture requirement of rice plant varies with its growing stages, and it is possible to increase the irrigation efficiency through reduction of water loss due to percolation in rice paddies. An experiment was conducted on the effectiveness of economical use of water by different irrigation period and different method of cultivation. The experimental plots were set up by means of randomized block design with three duplications; (a) Alltime submerged (b) Economically controlled, and (c) Extremely controlled. Three different irrigation periods were (a) Initial stage (b) Inter-stage, and (c) last stage. The topsoil of the three plots were excavated to the depth of 30cm and then compacted with clay of 6 cm thickness. Thereafter, they were piled up with the excavated top soils, leveled and cored with clay of 6cm thickeness arround footpath in order to prevent leakage. The results obtained frome the experiments are as follows; (1) There is no difference among the three experiment plots in terms of physical and chemical contditions, soil properties, and other characteristics. (2) Colulm length and ear length are not affected by different irrigation methdos. (3) There is no difference in the mature rate and grain weight of rice for the three plots. (4) The control plot which was irrigated every three days shows an increased yield over the all the time submerged plot by 17 persent. (5) The clay lined plot whose water holding capacity was held days long, needs only to be irrigated every 7 days. (6) The clay lined plot showes an increased yield over the untreated plot; over all the time submerged plot by 18 percent, extremely controlled plot by 18 percent, and economically controled plot by 33 percent.

  • PDF

증발억제법에 의한 수온 및 지온상승효과에 관한 연구

  • 김광식
    • Water for future
    • /
    • v.5 no.2
    • /
    • pp.6-16
    • /
    • 1972
  • It has been well studied and known that the yields from the rice fields irrigated by the cold water such as the water directly flowing in from mountain valleies, underground water and subground water are largely influenced by the water temperature. However, the best method of raising water temperature has not yet been established. This is because there are some essentially difficult problems associated. When we examine the effects of $1^{\circ}C$ rise in the water temperature under natural condition on rice growing, the necessity of this line of study is verified. The results of Mihara's study show that rice bears its fruits at the water temperature above $19^{\circ}C$ and the difference of $1^{\circ}C$ in the range of $19^{\circ}C$ to $22^{\circ}C$ can produce the 20% of difference in yields. Because of these facts, most farmers have made use of water temperature raising ponds, zigzag waterways and shelter belts. But the most important factor in raising water temperature has been found to be the heat loss due to evaporation. Recently, a good deal of experiment on raising water temperature and soil temperature by reducing the evaporation are being carried out all over the world. The reduction of evaporation does not only reduce heat loss, from the surface but also reduce the loss of water. Present study is aimed to determine the efficiency of different chemicals by which monomolecular films are formed over different surfaces such as water surface, soil surface and the surface of plant leaves with a purpose of preventing the transpiration, and aimed to observe the effects of the temperature rise and its influence on growing state as well as the durability of the plants under drought condition.

  • PDF

Effects of Saline Irrigation Water on Lettuce and Carrot Growth in Protected Cultivation (관개용수 염도수준에 따른 시설 상추 및 당근의 생육 영향 분석)

  • Jeon, Jihye;Jeong, Hanseok;Kim, Hakkwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.113-120
    • /
    • 2015
  • The objectives of this study were to monitor and assess the effects of saline irrigation water on lettuce and carrot growth in protected cultivation. One control and 4 treatments with three replications, which were differentiated according to the level of salinity in irrigated water, were employed for each vegetable to assess the effects of the irrigation with saline water. Monitoring results showed that the use of irrigation water containing above a certain level of salinity was found to cause excessive accumulation of salts in the soil as saline irrigation water increased electrical conductivity (EC) and sodium ($Na^+$) content in both lettuce and carrot soil samples, while tap water irrigation used as control decreased the salinity in the samples. The salinity higher than the threshold level of irrigation water was found to reduce the yields of lettuce and carrot, while in less than the threshold level the higher the salinity of the irrigation water increased the yields. The salinity of the irrigation water also appeared to increase the internal salinity of the plant as the $Na^+$ content in plant increased as the salinity of irrigation water increase. Increased $Na^+$ content was analyzed to be able to increase the sugar content in carrot. This study could contribute to suggest water quality criteria for safe use of saline water in protected cultivation, although long-term monitoring is needed to get more representative results.

Investigations into a Multipurpose Dam in Tasman District-New Zealand

  • Thomas, Joseph Theodore
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.40-48
    • /
    • 2008
  • The Waimea Basin is located on the northern tip of the South Island of New Zealand. It is a highly productive area with intense water use with multi-stakeholder interest in water. Irrigation from the underground aquifers here makes up the largest portion of used water; however the same aquifers are also the key urban and industrial sources of water. The Waimea/Wairoa Rivers are the main sources of recharge to the underlying aquifers and also feed the costal springs that highly valued by the community and iwi. Due to the location of the main rivers and springs close to the urban centre the water resource system here has high community and aesthetic values. Recent enhanced hydrological modelling work has shown the water resources in this area to be over allocated by 22% for a 1:10 year drought security for maintaining a minimalistic flow of 250 l/s in the lower Waimea River. The current irrigated land area is about 3700 hectares with an additional potential for irrigation of 1500 hectares. Further pressures are also coming on-line with significant population growth in the region. Recent droughts have resulted in significant water use cutbacks and the threat of seawater intrusion in the coastal margins. The Waimea Water Augmentation Committee (WWAC) initiated a three year stage 1 feasibility study in 2004/2005 into the viability of water storage in the upper parts of the catchment for enhancing water availability and its security of supply for consumptive, environmental, community and aesthetic benefits downstream. The project also sought to future proof water supply needs for the Waimea Plains and the surrounding areas for a 50 - 100 year planning horizon. The broad range stage 1 investigation programme has identified the Upper Lee Catchment as being suitable for a storage structure to provide the needs identified and also a possibility for some small scale hydro electricity generation as well. The stage 2 detailed feasibility investigations that are underway now (2007/2008), and to be completed in two years is to provide all details for progressing with the next stage of obtaining necessary permits for construction and commissioning a suitable dam.

  • PDF

Grain Yield and Water Use Efficiency as Affected by Irrigation at Different Growth Stages

  • Kim, Wook-Han;Hong, Byung-Hee;Ryu, Yong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.330-338
    • /
    • 1999
  • Extensive research has been conducted on effects of drought stress on growth and development of soybean but information is rather restricted on the limited-irrigation system by way of precaution against a long-term drought condition in the future. The experiment for limited-irrigation was conducted in transparent vinyl shelter at Asian Vegetable Research and Development Center (AVRDC), Taiwan in 1997. Two soybean varieties, Hwangkeum and AGS292, improved in Korea and AVRDC, respectively were used for this experiment. The relationships between normalized transpiration rate (NTR) and fraction of transpirable soil water (FTSW) in both varieties were similar that the NTR was unchanged until FTSW dropped to about 0.5 or 0.6. At FTSW less than those values, NTR declined rapidly. Days required to harvest in both varieties were significantly prolonged at IR6 treatment compared to any other treatments. Daily mean transpiration rate was significantly higher at IR5 treatment, as averaged over varieties. Similarly, water use efficiency was also high at 1R5 treatment. In both varieties, seed yield was the greatest at the IR5 treatment, as compared to any other limited-irrigation treatments, due to the increased seed number and high transpirational water use efficiency. The indices of input water and seed yield for the different limited-irrigation treatments against control indicated that Hwangkeum produced 59.6% or 60.7% of seed yield using 36.1% or 44.9% of input water, as compared to control, by irrigation at only R5 or R6 stages, respectively. The AGS292 produced 56.1% of seed yield with 35.4% of input water of control, when irrigated at R5 stage. The results of this study have elucidated that the limited irrigation at R5 stage in soybean can be minimized yield loss with such small quantity of water under the environment of long-term drought stress and the expected shortage of agricultural water in the future.

  • PDF

Estimation of Irrigation Return Flow on Agricultural Watershed in Madun Reservoir (마둔저수지 농업유역의 관개 회귀수량 추정)

  • Kim, Ha-Young;Nam, Won-Ho;Mun, Young-Sik;Bang, Na-Kyoung;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.85-96
    • /
    • 2021
  • Irrigation return flow is defined as the excess of irrigation water that is not evapotranspirated by direct surface drainage, and which returns to an aquifer. It is important to quantitatively estimate the irrigation return flow of the water cycle in an agricultural watershed. However, the previous studies on irrigation return flow rates are limitations in quantifying the return flow rate by region. Therefore, simulating irrigation return flow by accounting for various water loss rates derived from agricultural practices is necessary while the hydrologic and hydraulic modeling of cultivated canal-irrigated watersheds. In this study, the irrigation return flow rate of agricultural water, especially for the entire agricultural watershed, was estimated using the SWMM (Storm Water Management Model) module from 2010 to 2019 for the Madun reservoir located in Anseong, Gyeonggi-do. The results of SWMM simulation and water balance analysis estimated irrigation return flow rate. The estimated average annual irrigation return flow ratio during the period from 2010 to 2019 was approximately 55.3% of the annual irrigation amounts of which 35.9% was rapid return flow and 19.4% was delayed return flow. Based on these results, the hydrologic and hydraulic modeling approach can provide a valuable approach for estimating the irrigation return flow under different hydrological and water management conditions.

Climate-instigated disparities in supply and demand constituents of agricultural reservoirs for paddy-growing regions

  • Ahmad, Mirza Junaid;Cho, Gun-ho;Choi, Kyung-sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.516-516
    • /
    • 2022
  • Agricultural reservoirs are critical water resources structures to ensure continuous water supplies for rice cultivation in Korea. Climate change has increased the risk of reservoir failure by exacerbating discrepancies in upstream runoff generation, downstream irrigation water demands, and evaporation losses. In this study, the variations in water balance components of 400 major reservoirs during 1973-2017 were examined to identify the reservoirs with reliable storage capacities and resilience. A conceptual lumped hydrological model was used to transform the incident rainfall into the inflows entering the reservoirs and the paddy water balance model was used to estimate the irrigation water demand. Historical climate data analysis showed a sharp warming gradient during the last 45 years that was particularly evident in the central and southern regions of the country, which were also the main agricultural areas with high reservoir density. We noted a country-wide progressive increase in average annual cumulative rainfall, but the forcing mechanism of the rainfall increment and its spatial-temporal trends were not fully understood. Climate warming resulted in a significant increase in irrigation water demand, while heavy rains increased runoff generation in the reservoir watersheds. Most reservoirs had reliable storage capacities to meet the demands of a 10-year return frequency drought but the resilience of reservoirs gradually declined over time. This suggests that the recovery time of reservoirs from the failure state had increased which also signifies that the duration of the dry season has been prolonged while the wet season has become shorter and/or more intense. The watershed-irrigated area ratio (W-Iratio) was critical and the results showed that a slight disruption in reservoir water balance under the influence of future climate change would seriously compromise the performance of reservoirs with W-Iratio< 5.

  • PDF

A study of the relationship between Sedimentation and Storage requirments of reservoirs (저수지 내용적 감소가 필요저수량에 미치는 영향에 관한 연구)

  • 신일선;김재곤;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.1
    • /
    • pp.53-62
    • /
    • 1979
  • Since the first installation of irrigation Systems in Korea , a large number of small and medium sized reservoirs have been constructed as the main water sources Some 412, 000 ha are at present irrigated from these sources of supply. Many of the reservoirs were designed in accordance with old low standards and have in addition suffered a loss in capacity through sedimentation. At the same time, water demand has increased with the in troduction of high yielding varieties of rice. The combination has resulted in severe water deficits. To study the problem, 16 sample reservoirs have been surveyed and analysed. The results of the study are summarized be low: 1. Average decrease in reservoir capacity from the installation to present-8% 2. Average soil erosion loss (m$^3$/km$^2$/year) is 536 m$^3$/km$^2$/year and average erosion depth of soil is 0. 5mm per year. 3. No relationship, between reservoir capacity per unit of watershed (m$^3$/km$^2$) and soil erosion loss was found. 4. Increases are required in reservoir capacity: 15.8% due to the introduction of HYV's; 16.6% due to the change of system losses from 10%to 25% The conclusion to be drawn from the above results is that existing reservoir capacity should be increased by an average of 32%. The unit storage capacity to be adopted should be 661 mm

  • PDF