• Title/Summary/Keyword: irradiation breeding

Search Result 50, Processing Time 0.028 seconds

Effect of Gamma Ray on Germination, Growth and Antioxidant Activity of Senna tora (감마선 조사가 결명자의 생육과 항산화 활성에 미치는 영향)

  • Um, Min;Kang, Si Yong;Lee, Jae Won;Lee, Ok Ran
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.5
    • /
    • pp.290-295
    • /
    • 2017
  • Background: Senna tora is a flowering plant in the legume family Fabaceae. Its seeds are roasted and consumed as tea in Asia, to reduce inflammation in the liver and improve eyesight. Thus, it has been considered as an important medicinal crops in Asia. However, breeding trials to improve its genetic properties are rare. Mutation breeding by gamma ray is known to be an effective and highly successful approach for the generation of agronomically useful cultivars. Here we analyzed the effects of several dosages of gamma ray on the biological conditions of Senna tora seeds. Methods and Results: The germination rate and growth patterns of Senna tora were examined following irradiation with gamma ray at 100, 200, 300 and 400 Gy. The total phenolic compound contents and antioxidant activities of Senna tora were analyzed. Germination increased at 100 and 200 Gy in the M1 and M2 generations compared with that of the control (M0). The total phenolic compound contents and antioxidant activity of the seeds significantly decreased as the radiation dosage increased above 100 Gy in the M1 generation. Conclusions: Senna tora, irradiated with gamma ray at dosages 100, 200, 300, and 400 Gy, showed maximum germination rate at 200 Gy in the M2 generation. Plant height and leaf size gradually decreased with increasing gamma ray intensity in the M2 generation. The total phenolic compound contents decreased significantly at 400 Gy, and the related antioxidant activity was also decreased as the radiation dosage increased.

Validation of the neutron lead transport for fusion applications

  • Schulc, Martin;Kostal, Michal;Novak, Evzen;Czakoj, Tomas;Simon, Jan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.959-964
    • /
    • 2022
  • Lead is an important material, both for fusion or fission reactors. The cross sections of natural lead should be validated because lead is a main component of lithium-lead modules suggested for fusion power plants and it directly affects the crucial variable, tritium breeding ratio. The presented study discusses a validation of the lead transport libraries by dint of the activation of carefully selected activation samples. The high emission standard 252Cf neutron source was used as a neutron source for the presented validation experiment. In the irradiation setup, the samples were placed behind 5 and 10 cm of the lead material. Samples were measured using a gamma spectrometry to infer the reaction rate and compared with MCNP6 calculations using ENDF/B-VIII.0 lead cross sections. The experiment used validated IRDFF-II dosimetric reactions to validate lead cross sections, namely 197Au(n, 2n)196Au, 58Ni(n,p)58Co, 93Nb(n, 2n)92mNb, 115In(n,n')115mIn, 115In(n,γ)116mIn, 197Au(n,γ)198Au and 63Cu(n,γ)64Cu reactions. The threshold reactions agree reasonably with calculations; however, the experimental data suggests a higher thermal neutron flux behind lead bricks. The paper also suggests 252Cf isotropic source as a valuable tool for validation of some cross-sections important for fusion applications, i.e. reactions on structural materials, e.g. Cu, Pb, etc.

Effect of Gamma Irradiation on the Germination and Growth of Astragalus membranaceus (황기 발아 및 생장에 미치는 감마선 조사 효과)

  • Kim, Dong-Hwi;Park, Hee-Woon;Park, Chun-Geun;Sung, Jung-Sook;Seong, Nak-Sul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.4
    • /
    • pp.238-241
    • /
    • 2008
  • Astragalus membranaceus have used as a medicinal herb and food in Korea. It is limited its harvest by diseases, pests and climate, therefore the main objective of Astragalus membranaceus breeding is the development of varities with the resistance for them. We used mutation breeding to obtain the genetic resources with the resistance for them. Pocheon, the local variety of Astragalus membranaceus, was treated with different levels Y-ray of $100{\sim}600$ Gy. There were investigated the sensitivity on germination and survival rate, plant height and the other characters. Germination rate from 4th day after sowing was significantly decreased above the 300 Gy as compared to the control. Compared to control, the decrements of survival rate were 32, 43, 63, 72, 84 and 89% for 100, 200, 300, 400, 500 and 600 Gy, respectively. The sensitive characters to Y-ray were plant height, number of branches per plant and survival rate, and the insensitive characters were number of leaves, length of leaf, and width of leaf. Plant height, number of branches per plant and survival rate seemed to be appropriate characters to decide the radiosensitivity, and radiation doses of $200{\sim}300$ Gy ($LD_{50}$) were recommend for mutation breeding.

Induction of Petal Color Mutants through Gamma Ray Irradiation in Rooted Cuttings of Rose (장미 삽목묘의 감마선 처리에 의한 화색 돌연변이체 유기)

  • Koh, Gab-Cheon;Kim, Min-Za;Kang, Si-Yong
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.796-801
    • /
    • 2010
  • This study was carried out to establish a system for mutation breeding by irradiation of gamma-ray in $Rosa$ $hybrida$ Hort. The rooted cuttings of two roses, 'Spidella' and 'Cabernet' were irradiated with different gamma-ray doses (0, 30, 50, 70, 90, 110, 130, 150 and 170 Gy) from a $^{60}Co$ source to reveal an optimal dose for induction of mutants. The irradiated plants were planted in a greenhouse, and investigated on the appearance of petal color mutants and shoot growth by gamma ray dose. The 50% lethal doses ($LD_{50}$) of plant were 110 Gy for 'Spidella' and 150 Gy for 'Cabernet', respectively. The 50% decrease dose of shoot length was observed at 70-90 Gy dose for 'Spidella', and 110 Gy dose for 'Cabernet'. Solid, chimeric and mosaic petal mutants with various colors were induced from pink petal of 'Spidella' and red petal of 'Cabernet' when 30-170 Gy dose was irradiated. The mutants obtained from 'Spidella' had white, ivory, pinky ivory, light pink and deep pink petal colors. The mutants obtained from 'Cabernet' had pink, deep pink, purple red (magenta), orange red and purple petal colors. It was suitable to irradiate 70-90 Gy dose for 'Spidella' and 90-110 Gy dose for 'Cabernet' for the induction of various mutants considering plant survival rate, shoot growth and mutant occurrence rate.

Effects of Gamma-ray Irradiation on Radio Sensitivity in Oat (Avena sativa) (감마선 조사가 귀리(Avena sativa)의 감수성에 미치는 영향)

  • Ryu, Jaihyunk;Kwon, Soon-Jae;Im, Seung Bin;Jeong, Sang Wook;Ahn, Joon-Woo;Kim, Jin-Back;Choi, Ki Choon;Kim, Won Ho;Kang, Si-Yong
    • Korean Journal of Plant Resources
    • /
    • v.29 no.1
    • /
    • pp.128-135
    • /
    • 2016
  • This study examined radiation damage and the optimal gamma-ray dose for mutation breeding in oat (Avena sativa L. cv. Samhan). The seed germination rate decreased as the dose increased over 500 Gy. The median lethal dose (LD50) was approximately 392 Gy. The median reduction dose (RD50) for plant height, tiller number, root length, and flash weight was 411, 403, 394, and 411 Gy, respectively. The optimal dose of gamma irradiation for inducing oat mutation appears to be in the range 300-400 Gy. We performed the comet assay to observe nuclear DNA damage induced by gamma-ray irradiation. This assay showed a clear difference with gamma-ray treatments. DNA damage increased temporarily 7 days after treatment depending on the dose, while no significant difference was identified in response to 300 Gy 30 days after the gamma-ray treatments. The growth characteristics of the M2 generation decreased as the dose increased over 400 Gy.

Enhancement of Cookie Quality by Microwave Treatment of Allergy Reaction-reduced "Ofree" Wheat Flour (마이크로웨이브 조사를 통한 알러지 저감 밀 오프리의 제과 가공적성 개선)

  • Park, JinHee;Yoon, Young-Mi;Son, Jae-Han;Choi, Chang-Hyun;Kim, Kyeong-Hoon;Kim, Kyeong-Min;Cheong, Young-Keun;Kang, Chon-Sick;Yang, Jinwoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.366-372
    • /
    • 2019
  • The use of flour milled from the Ofree wheat cultivar for baking attenuates allergies because some of the genes related to the allergic reaction have been knocked because some of its genes related to allergic reactions have been knocked down or knocked out through genetic mutation. However, the utilization of this flour is limited because the Ofree grain contains high content of total protein and gluten. Microwave irradiation has been used for changing the protein and gluten characteristics of wheat flour. Thus, this study investigated appropriate conditions of microwave irradiation to enhance the utilization of Ofree flour. As a result, when the flour was microwave-treated for 2 min, although the total protein and gluten contents were not changed, some qualities of the baked sugar-snap cookies, such as spread factor (diameter and thickness) and appearance (crack), were ameliorated. However, excessive heat treatment of the flour for over 3 min led to protein denaturation, which negatively affected the quality of the products. These results indicate that 2 min of microwave irradiation of flour that has high content of total protein and gluten can be used for the enhancement of cookie quality. Therefore, these results are expected to increase the utilization of Ofree wheat flour.

Effects of Gamma-ray Irradiation on Growth Characteristics and DNA Damage in Licorice (Glycyrrhiza uralensis) (감마선 조사가 감초(Glycyrrhiza uralensis)의 초기 생육 및 DNA 손상에 미치는 영향)

  • Ryu, Jaihyunk;Im, Seung Bin;Kim, Dong Sub;Ahn, Joon-Woo;Kim, Jin-Baek;Kim, Sang Hoon;Kang, Si-Yong
    • Journal of Radiation Industry
    • /
    • v.8 no.2
    • /
    • pp.89-95
    • /
    • 2014
  • This study was conducted to determine the optimal dose of gamma-ray on the growth and nucleus DNA damage for mutation breeding in licorice. Gamma-rays irradiated to dry seeds with various doses (0 to 1000 Gy). Significant decreases in germination rate (%), survival rate (%) and growth characteristics (plant height, number of leaves, root length and fresh weight) were observed by dose of increased. $LD_{50}$ (lethal dose) was approximately 400 Gy to 500 Gy. Also, reduction doses ($RD_{50}$) of plant height, number of leaves, root length and flash weight were 428 Gy, 760 Gy, 363 Gy and 334 Gy, respectively. It is supplest that the optimal dose of gamma irradiation for licorice mutation induction might be about 400 Gy in this study. We also conducted comet assay to observe nucleus DNA damage due to gamma irradiation. In comet assay, a clear difference was identified over 300 Gy treatments. With increasing doses of gamma-ray in the range of 100 to 1000 Gy, the rate of head DNA was decreased significantly from 92.88% to 73.09%. Tail length(${\mu}m$) was increased as the dose of increased over 300 Gy. Growth characteristics (Germination rate, Survival rate, plant height, number of leaves, root length and fresh weight) were highly negatively ($P{\leq}0.01$) correlated with dose. While the tail length was highly positively ($P{\leq}0.01$) correlated with dose.

Effect of Irradiation on Growth, Bulblet Formation, and Germination of Pollen and Seed of Several Lily Cultivars (나리 생장, 자구 발달 및 화분과 종자발아에 미치는 방사선의 영향)

  • Park, In Sook;Suh, Dong Hee;Hwang, Yoon Jung;Chung, Jae-Dong;Kang, Si-Yong;Lim, Ki-Byung
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.3
    • /
    • pp.211-217
    • /
    • 2008
  • To build up data for mutation breeding of lily, sensitivity to irradiation of bulb, seed and pollen was investigated. The bulbs of seven cultivars including 'New Wave' were very sensitive to gamma rays. Non-irradiated bulbs produced plants with bloom as normal. However, irradiated bulbs showed retarded growth and did not flower. Bulbs of 'New Wave' and 'Tiny Dino' irradiated with 125Gy gamma rays survived, but their growth rate dropped considerably. Part or whole leaves of the other cultivars except 'New Wave' and 'Tiny Dino' withered. Moisture content of individual scale was 72~78% depending on cultivar. Bulblet formation from untreated scales was 100%. Among all irradiated scales only 'Siberia' scales showed 8.5% bulblet formation when irradiated with 50Gy gamma rays. Pollen germination as affected by gamma ray irradiation had no consistent tendency. When dosage of $F_1$ 'Augusta' seeds reached 300Gy, their survival ratio was drastically decreased. Bulblet formation in vitro was observed only in non-irradiated seeds. Lethal dose ($LD_{50}$) of seed was less than 100Gy. Height and width of $F_1$ 'Augusta' bulblets in vitro irradiated with gamma rays decreased as dosage increased regardless of the culture method. The percentage shoot formation was 100% in non-irradiated bulblets and 15~60% in irradiated ones.

STUDIES ON THE DIMORPHISM AND TRANSITION OF BISEXUALITY OF HETEROSTYLOUS POLYGONACEAE (여뀌과 이형경식물의 Dinorphism과 Bisexuality의 변화)

  • Harn, Chang-Yawl
    • Journal of Plant Biology
    • /
    • v.3 no.2
    • /
    • pp.6-18
    • /
    • 1960
  • The present experiments were designed in order to clarify the differences between the long and short styled plants and the transgressive gradition in the degree of dimorphism among the three heterostylous species of the Polygonus, P. japonica, F. esculentum, and P. senticosa, based on investigations regarding the floral structure, ecological and physiological traits, the results of which are summarized as follows: (1) P. japonica, although it exhibits typical dimorphism, has undergone so high a differentiation between long and short styled that its long styled individuals behave as if they were female; and short styled individuals as if male. In long-styled individuals, filament, anther, and pollen grains show signs of degeneration, most of the pollen being abortive. On the other hand, in short styled individuals, the filament, anther, and pollen grains have attained remarkable development; the pollen grians are large and fertile. In short-plant the fertilized flowers readily drop off in every stage of their embryo development. This species has completely lost the self-fertile property, which is characteristic of the non-dimorphic Polygonum genus. Although this specsei typically exhibits the physiological characteristics of the non-dimorphic Polygonum genus. Although this specisei typically exhibits the physiological characteristics of dimorphism in controlled pollination, the short-styled individuals bear no seed in nature, thus misleading taxonomists to idenfity the short-styled plant as male. 2) The morphological feature of the flower organ of P. senticosa obviously indicates definite dimorphism. Physiologically, however, no differentiation towards dimorphism was observed, the species still retaining, both in long and short-individuals, the self-fertile property common to the Polygonum genus. Elaborate examinations revealed that regardless of the modes of pollination, both fertiization and seed setting flourish, no differentiation betwen legitimate and illegitimate unions being recognizable. This sort of physiological property has not been observed in the investigations of other heterostylous plants. It is assumed that this species is differentiated structurally into dimorphism, but not yet physiologically. In nature, however, this plant would have more opportunities to be cross-pollinated, i.e., legitimately combined, than self-pollinated because of the development of two forms of flowers. 3) In terms of heterostylism, the F. esculentum just occupies the intermediate position between P. japonica and P. senticosa structurally, ecologically, and physiologically. Doescription of some of the physiological behavior of the plant will suffice to demonstrate the above facts. While P. japonica has completely lost its self-fertile property, P. senticosa still retains it wolly. In F. esculentum 2-6% of self-fertility is the result in illegitimate combination. There occur occasionally hereditary self fertile individuals among some of the F. or 20 min. irradiation plot, when they reach any stage of the same bacterial population. In addition to this increase of total population in the plots with the more dose of UV light irradiation, it seems that the more dose of UV light irradiation is the more shortened the generation time of Azotobacter. Therefore, it is clear that variation of reproductive rate must be, mere or less, due to the genetic effects induced by UV light irradiation. On the other hand, the lag phase or logarithmic growth phase in nonirradiated culture is shortened prominently, and this must be due to the difference in bacterial number of the original inoculm. The generation time of Azotobacter is shortened by exogeneous treatment of nuclei acid derivatives, and the degree is greater in case of DNA derivatives than RNA dervatives. W.H. Price reported that the rate of ribose nucleic acid to protein in Staphylococcus muscae is proportional to the generation time: that is the faster the cell can form ribose nucleic acid, the more rapid its growth. This explains the shortening of generation time by exogeneous RNA derivatives in this work reasonably. On the other hand, it is well known that the desoxyribose nuclic acid content per cell is constant and independent of the generation time. A.D. Laren and W.N. Takahashi reported that the infectious RNA from TMV is 6 times as sensitive to inactivation by UV as it is in the form of intact virus, and that inactivation of infectious TMV involves onlu a local change on RNA chain. But, the effect of exogeneous DNA in this work suggests that irradiated living cell which cotain DNA bring about some change on DNA moleculs as well as RNA molecules. And if the mutagenic effects of UV take into consideration, it is very reasonable. Therefore, it is clear that the variation of the generation time by UV irradiation is, more or less, due to the genetic effects. Therefore, it seems that the shortness of the average lifewpan of Azotobacter by UV irradiation is resulted not only from the influence of the environmental conditions, but also from the variation of genetic factor of the individual.

  • PDF

Biochemical Studies in Relation to Chance of Materials in Process of Growth of Embyro in Silkworm Eggs (Bombyx mori L.) (가잠난 배자발육과정에서 각종내용물질의 변동에 관한 생화학적 연구)

  • 임영우
    • Journal of Sericultural and Entomological Science
    • /
    • v.13 no.1
    • /
    • pp.23-29
    • /
    • 1971
  • As a result of analyzing the change of material substance of all sorts biochemically and comparing the control with ${\gamma}$-ray irradiation (800${\gamma}$, 40 Min), incubating the silkworm eggs (Bombyx mori L.) as the objective in the process of growth of embyro shortly before hatching, the following conclusion has been found. 1. Ascorbic acid has shown the maximum increase of 319 r/g in the Byong B embyro stage and in other words it has increased during the period of vigorous metabolism of the materials in eggs but it has decreased before hatching after that period. 2. Triglyceride has shown the increase of 27.54 mg/g in the Byong A stage, the early period of incubation and in other words it has increased in the period of activation of cells in eggs but it has gradually decreased during the growth of embyro after that period. Great change of either total cholesterol or free cholesterol has not been shown from the early period till shortly before hatching. 3. Free fatty acid has shown the minimum decrease of 257.4$\mu$ mole/g in the Byong A stage in which triglyceride increases greatly. On the contrary, it has shown the increase of 1, 020.0$\mu$ mole/g in Ki A stage in which triglyceride decreases. As a whole, the fact that free fatty acid increases according to the growth of embyro in eggs has been found. 4. Glucose has shown the increase of 281.2 mg/g in control during tile Pigment stage and it has shown the increase of 179.6 mg/g in ${\gamma}$-ray irradiation during the same period. The difference in quantity between the former and the latter is due to the fact that the growth of embyro has been influenced by the radio active. Glucose has changed with free fatty acid and phosphorus the other way round. 5. Control organic phosphorus has shewh the increase of 5.23mg/g during the Byong B or Ki A in which organ and tissue in the emhyro has been formed. Organic phosphorus in ${\gamma}$-ray irradiation has shown the increase of 5.73mg/g during Ki B. Inorganic phosphorus has shown only a little change in the control and ${\gamma}$-ray irradiation. The phosphorus in both has shown a little quantity in the ${\gamma}$-ray irradiation in the early period of incubation. After the Ki A embyro, it has increased rapidly and it has increased till the hatching more continually than in control. The about results of the research will be helpful and instructive to the betterment and improvement, breeding and management of animals and plants.

  • PDF