• 제목/요약/키워드: irradiated fuel

검색결과 155건 처리시간 0.036초

Water-Side Oxide Layer Thickness Measurement of the Irradiated PWR Fuel Rod by NDT Method

  • Park, Kwang-June;Park, Yoon-Kyu;Kim, Eun-Ka
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(2)
    • /
    • pp.680-686
    • /
    • 1995
  • It has been known that water-side corrosion of fuel rods in nuclear reactor is accompanied with the loss of metallic wall thickness and pickup of hydrogen. This corrosion is one of the important limiting factors ill the operating life of fuel rods. In connection with the fuel cladding corrosion, a device to measure the water-side oxide layer thickness by means of the eddy-current method without destructing the fuel rod was developed by KAERI. The device was installed on the multi-function testing bench in the nondestructive test hot-cell and its calibration was carried out successfully for the standard rod attached with plastic thin films whose thicknesses are predetermined. It shows good precision within about 10% error. And a PWR fuel rod, one of the J-44 assembly discharged from Kori nuclear power plant Unit-2, has been selected for oxide layer thickness measurements. With the result of data analysis, it appeared that the oxide layer thicknesses of Zircaloy cladding vary with the length of the fuel rod, and their thicknesses were compared with those of the destructive test results to confirm the real thicknesses.

  • PDF

Preliminary Analysis of In-reactor Behavior of Three MOX Fuel Rods in the Maiden Reactor

  • Koo, Yang-Hyun;Lee, Byung-Ho;Sohn, Dong-Seong
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1999년도 추계학술발표회요약집
    • /
    • pp.248.1-248
    • /
    • 1999
  • Preliminary analysis of in-reactor thermal performance of three MOX fuel rods, which are going to be irradiated in the Halden reactor beginning in the first Quarter of the year 2000 under the framework of the OECD Halden Reactor Programme, have been conducted by using the computer code COSMOS to ensure their safe operation. Parametric studies have been carried out to investigate the effect of uncertainties on in-reactor behavior by considering the four kinds of uncertainties; thermal conductivity, linear power, manufacturing parameters, and model constants. The analysis shows that, in the case of annular MOX -1 fuel, calculation results for thermal performance vary widely depending on the selection of model constants for fission gas release (FGR). On the contrary, the thermal performance of solid MOX - 3 fuel does not depend on the choice of FGR constants to a large extent as MOX-I, because the fuel temperature is very high in the MOX-3 irrespective of the choice of FGR constants and hence the capacity of grain boundaries to retain gas atoms is not large enough to accommodate the number of gas atoms reaching the grain boundaries. It is planned that when the data on microstructure and thermal conductivity for each type of MOX fuel are available, new analysis will be made using these information. In addition, FGR model constants will be derived from the measured fuel centerline temperature, rod internal pressure and other related data.

  • PDF

Machine learning of LWR spent nuclear fuel assembly decay heat measurements

  • Ebiwonjumi, Bamidele;Cherezov, Alexey;Dzianisau, Siarhei;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3563-3579
    • /
    • 2021
  • Measured decay heat data of light water reactor (LWR) spent nuclear fuel (SNF) assemblies are adopted to train machine learning (ML) models. The measured data is available for fuel assemblies irradiated in commercial reactors operated in the United States and Sweden. The data comes from calorimetric measurements of discharged pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies. 91 and 171 measurements of PWR and BWR assembly decay heat data are used, respectively. Due to the small size of the measurement dataset, we propose: (i) to use the method of multiple runs (ii) to generate and use synthetic data, as large dataset which has similar statistical characteristics as the original dataset. Three ML models are developed based on Gaussian process (GP), support vector machines (SVM) and neural networks (NN), with four inputs including the fuel assembly averaged enrichment, assembly averaged burnup, initial heavy metal mass, and cooling time after discharge. The outcomes of this work are (i) development of ML models which predict LWR fuel assembly decay heat from the four inputs (ii) generation and application of synthetic data which improves the performance of the ML models (iii) uncertainty analysis of the ML models and their predictions.

Analysis on the post-irradiation examination of the HANARO miniplate-1 irradiation test for kijang research reactor

  • Park, Jong Man;Tahk, Young Wook;Jeong, Yong Jin;Lee, Kyu Hong;Kim, Heemoon;Jung, Yang Hong;Yoo, Boung-Ok;Jin, Young Gwan;Seo, Chul Gyo;Yang, Seong Woo;Kim, Hyun Jung;Yim, Jeong Sik;Kim, Yeon Soo;Ye, Bei;Hofman, Gerard L.
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.1044-1062
    • /
    • 2017
  • The construction project of the Kijang research reactor (KJRR), which is the second research reactor in Korea, has been launched. The KJRR was designed to use, for the first time, U-Mo fuel. Plate-type U-7 wt.% Mo/Al-5 wt.% Si, referred to as U-7Mo/Ale5Si, dispersion fuel with a uranium loading of $8.0gU/cm^3$, was selected to achieve higher fuel efficiency and performance than are possible when using $U_3Si_2/Al$ dispersion fuel. To qualify the U-Mo fuel in terms of plate geometry, the first miniplates [HANARO Miniplate (HAMP-1)], containing U-7Mo/Al-5Si dispersion fuel ($8gU/cm^3$), were fabricated at the Korea Atomic Energy Research Institute and recently irradiated at HANARO. The PIE (Post-irradiation Examination) results of the HAMP-1 irradiation test were analyzed in depth in order to verify the safe in-pile performance of the U-7Mo/Al-5Si dispersion fuel under the KJRR irradiation conditions. Nondestructive analyses included visual inspection, gamma spectrometric mapping, and two-dimensional measurements of the plate thickness and oxide thickness. Destructive PIE work was also carried out, focusing on characterization of the microstructural behavior using optical microscopy and scanning electron microscopy. Electron probe microanalysis was also used to measure the elemental concentrations in the interaction layer formed between the U-Mo kernels and the matrix. A blistering threshold test and a bending test were performed on the irradiated HAMP-1 miniplates that were saved from the destructive tests. Swelling evaluation of the U-Mo fuel was also conducted using two methods: plate thickness measurement and meat thickness measurement.

HYPER 빔창의 열수력 해석에 의한 운전특성에 관한 연구 (A Study on the Operating Characteristics by Heat Flow Analysis of HYPER Beam Window)

  • 송민근;최진호;주은선;송태영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.915-920
    • /
    • 2001
  • A spent fuel problem has prevented the nuclear power from claiming to be a completely clean energy source. The nuclear transmutation technology to incinerate the long lived radioactive nuclides and produce energy during the incineration process is believed to be one or the best solutions. HYPER(Hybrid Power Extraction Reactor) is the accelerator driven transmutation system which is being developed by KAERI(Korea Atomic Energy Research Institute). Some major feature of HYPER have been developed and employed. On-power fueling concepts are employed to keep system power constant with minimum variation of accelerator power. A hollow cylinder-type metal fuel is designed for the on-line refueling concept. Lead-bismuth(Pb-Bi) is adopted as a coolant and Spallation target material. HYPER is a subcritical reactor which needs an external neutron source. 1GeV proton beam is irradiated to Lead-bismuth(Pb-Bi) target inside HYPER, and spallation neutrons are produced. When proton beams are irradiated, much heat is also deposited in the Pb-Bi target and beam window which separates Pb-Bi and accelerator vacuum. Therfore, an effective cooling is needed for HYPER target. In this paper, we performed the thermal-hydraulic analysis of HYPER target using FLUENT code, and also calculated thermal and mechanical stress of the beam window using ANSYS code.

  • PDF