• Title/Summary/Keyword: iron-reducing bacterium

Search Result 11, Processing Time 0.021 seconds

Effects of Iron-Reducing Bacteria on Carbon Steel Corrosion Induced by Thermophilic Sulfate-Reducing Consortia

  • Valencia-Cantero, Eduardo;Pena-Cabriales, Juan Jose
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.280-286
    • /
    • 2014
  • Four thermophilic bacterial species, including the iron-reducing bacterium Geobacillus sp. G2 and the sulfate-reducing bacterium Desulfotomaculum sp. SRB-M, were employed to integrate a bacterial consortium. A second consortium was integrated with the same bacteria, except for Geobacillus sp. G2. Carbon steel coupons were subjected to batch cultures of both consortia. The corrosion induced by the complete consortium was 10 times higher than that induced by the second consortium, and the ferrous ion concentration was consistently higher in iron-reducing consortia. Scanning electronic microscopy analysis of the carbon steel surface showed mineral films colonized by bacteria. The complete consortium caused profuse fracturing of the mineral film, whereas the non-iron-reducing consortium did not generate fractures. These data show that the iron-reducing activity of Geobacillus sp. G2 promotes fracturing of mineral films, thereby increasing steel corrosion.

Metabolic Characterization of Lactic Acid Bacterium Lactococcus garvieae sk11, Capable of Reducing Ferric Iron, Nitrate, and Fumarate

  • Yun, Su-Hee;Hwang, Tae-Sik;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.218-225
    • /
    • 2007
  • A lactic acid bacterium capable of anaerobic respiration was isolated from soil with ferric iron-containing glucose basal medium and identified as L. garvieae by using 16S rDNA sequence homology. The isolate reduced ferric iron, nitrate, and fumarate to ferrous iron, nitrite, and succinate, respectively, under anaerobic $N_2$ atmosphere. Growth of the isolate was increased about 30-39% in glucose basal medium containing nitrate and fumarate, but not in the medium containing ferric iron. Specifically, metabolic reduction of nitrate and fumarate is thought to be controlled by the specific genes fnr, encoding FNR-like protein, and nir, regulating fumarate-nitrate reductase. Reduction activity of ferric iron by the isolate was estimated physiologically, enzymologically, and electrochemically. The results obtained led us to propose that the isolate metabolized nitrate and fumarate as an electron acceptor and has specific enzymes capable of reducing ferric iron in coupling with anaerobic respiration.

Interaction between Selenium and Bacterium and Mineralogical Characteristics of Biotreated Selenium (셀레늄-미생물간의 반응 및 셀레늄 광물화 특성)

  • Lee, Seung-Yeop;Oh, Jong-Min;Baik, Min-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.217-224
    • /
    • 2011
  • Removal of dissolved selenium by D. michiganensis, a iron-reducing bacterium, and effects of dissolved metal elements such as iron, sulfate, and copper were investigated. Selenide that was reduced from selenite (2 mM) by D. michiganensis was gradually removed from the aqueous medium. As the reduced selenide was combined with aqueous iron, it was precipitated as a nanoparticulate iron-selenide. Sulfate and copper negatively affected the microbial selenite reduction, and the copper was especially toxic to the bacterium, inhibiting a microbial removal of dissolved selenite. These results show that it should be carefully biotreated for a selenium-contaminated site considering in situ sulfate or copper distribution and concentration. Consequently, the formation of iron-selenide by bacteria will be an important measure for preventing a long-distance migration of selenium in the subsurface environments.

Corrosive Characteristics of Metal Materials by a Sulfate-reducing Bacterium (황산염환원미생물에 의한 금속재료의 부식 특성)

  • Lee, Seung Yeop;Jeong, Jongtae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.219-228
    • /
    • 2013
  • To understand characteristics of biogeochemical corrosion for the metal canisters that usually contain the radioactive wastes for a long-term period below the ground, some metal materials consisting of cast iron and copper were reacted for 3 months with D. desulfuricans, a sulfate-reducing bacterium, under a reducing condition. During the experiment, concentrations of dissolved metal ions were periodically measured, and then metal specimen and surface secondary products were examined using the electron microscopy to know the chemical and mineralogical changes of the original metal samples. The metal corrosion was not noticeable at the absence of D. desulfuricans, but it was relatively greater at the presence of the bacterium. In our experiment, darkish metal sulfides such as mackinawite and copper sulfide were the final products of biogeochemical metal corrosion, and they were easily scaled off the original specimen and suspended as colloids. For the copper specimen, in particular, there appeared an accelerated corrosion of copper in the presence of dissolved iron and bacteria in solution, probably due to a weakening of copper-copper binding caused by a growth of other phase, iron sulfide, on the copper surface.

Microbial Synthesis of Cobalt-Substituted Magnetite Nanoparticles by Iron Reducing Bacteria (미생물을 이용한 나노입자의 코발트로 치환된 자철석의 합성)

  • Yul Roh;Hi-Soo Moon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.111-118
    • /
    • 2001
  • The use of bacteria as a novel biotechnology to facilitate the production of nanoparticles is in its infancy. Cobalt-substituted magnetite nanoparticles were synthesized by a thermophilic iron(III)-reducing bacterium, TOR-39, under anaerobic conditions using amorphous Fe(III) oxyhydroxides plus cobalt ( $Co^{2+}$ and $Co^{3+}$ ) as an electron acceptor and organic carbon as an electron donor. Microbial processes produced copious amounts of nm-sized cobalt substituted magnetites. Chemical analysis and X-ray powder diffraction analysis showed that cobalt was substituted into biologically facilitated magnetites. Microbially facilitated synthesis of the cobalt-substituted magnetites may expand the possible use of the specialized ferromagnetic particles.

  • PDF

Microbial Production and Characterization of Superparamagnetic Magnetite Nanoparticles by Shewanella sp. HN-41

  • Lee, Ji-Hoon;Roh, Yul;Hur, Hor-Gil
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1572-1577
    • /
    • 2008
  • A facultative dissimilatory metal-reducing bacterium, Shewanella sp. strain HN-41, was used to produce magnetite nanoparticles from a precursor, poorly crystalline iron-oxyhydroxide akaganeite ($\beta$-FeOOH), by reducing Fe(III). The diameter of the biogenic magnetite nanoparticles ranged from 26 nm to 38 nm, characterized by dynamic light scattering spectrophotometry. The magnetite nanoparticles consisted of mostly uniformly shaped spheres, which were identified by electron microscopy. The magnetometry revealed the superparamagnetic property of the magnetic nanoparticles. The atomic structure of the biogenic magnetite, which was determined by extended X-ray absorption fine structure spectroscopic analysis, showed similar atomic structural parameters, such as atomic distances and coordinations, to typical magnetite mineral.

Growth Properties of the Iron-reducing Bacteria, Shewanella putrefaciens IR-1 and MR-1 Coupling to Reduction of Fe(III) to Fe(II)

  • Park, Doo-Hyun;Kim, Byung-Hong
    • Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.273-278
    • /
    • 2001
  • Shewanela, putrefaciene IR-1 and MR-1 were cultivated by using various combinations electron donor-acceptor, lactate-Fe(III) lactate-nitrate, pyruvate-FE(III), pyruvate-nitrate H$_2$ acetate-Fe(III) and H$_2$-acetate-nitrate. Both strains grew fermentatively on pyruvate and lactate but not on without and electron acceptor. In culture with Fe(III), both astrains grew on pyruvate and lactate but on H$_2$-acetate- CO$_2$. In cultivation with nitrate, both stains grew on pyruvate lactage and on H$_2$-acetate-CO$_2$ The growth yields of IR-1 pyruvate, pyruvate-Fe(III) and lactate-Fe(III) were about 3.4, 3.5, and 3.6(g cell/M substrate), respectively. From the growth properties of both strains on media with Fe(III) as an electron acceptor, the bacterial growth was confirmed not to be increased by addition of Fee(III) as an electron acceptor to the growth medium, which indicates a possibility that the dissimilatory reduction of Fe(III) to Fe(III) may not be coupled to free energy production.

  • PDF

Influence of Iron Phases on Microbial U(VI) Reduction

  • Lee, Seung-Yeop;Baik, Min-Hoon;Lee, Min-Hee;Lee, Young-Boo;Lee, Yong-Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.58-65
    • /
    • 2011
  • The bacterial uranium(VI) reduction and its resultant low solubility make this process an attractive option for removing U from groundwater. An impact of aqueous suspending iron phase, which is redox sensitive and ubiquitous in subsurface groundwater, on the U(VI) bioreduction by Shewanella putrefaciens CN32 was investigated. In our batch experiment, the U(VI) concentration ($5{\times}10^5M$) gradually decreased to a non-detectable level during the microbial respiration. However, when Fe(III) phase was suspended in solution, bioreduction of U(VI) was significantly suppressed due to a preferred reduction of Fe(III) instead of U(VI). This shows that the suspending amorphous Fe(III) phase can be a strong inhibitor to the U(VI) bioreduction. On the contrary, when iron was present as a soluble Fe(II) in the solution, the U(VI) removal was largely enhanced. The microbially-catalyzed U(VI) reduction resulted in an accumulation of solid-type U particles in and around the cells. Electron elemental investigations for the precipitates show that some background cations such as Ca and P were favorably coprecipitated with U. This implies that aqueous U tends to be stabilized by complexing with Ca or P ions, which easily diffuse and coprecipitate with U in and around the microbial cell.

Isolation and Identification of an Anaerobic Dissimilatory Fe(III)-Reducing Bacterium, Shewanella putrefaciens IR-1

  • Hyun, Moon-Sik;Kim, Byung-Hong;Chang, In-Seop;Park, Hyung-Soo;Kim, Hyung-Joo;Kim, Gwang-Tae;Kim, Mi-a;Park, Doo-Hyun
    • Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.206-212
    • /
    • 1999
  • In order to isolate a Fe(III)-reducer from the natural environment, soil samples were collected from various patty fields and enriched with ferric citrate as a source of Fe(III) under anaerobic condition. Since the enrichment culture was serially performed, the Fe(III)-reduction activity was serially diluted and cultivated on an agar plate containing lactate and ferric citrate in an anaerobic glove box. A Gram negative, motile, rod-shaped and facultative anaerobic Fe(III)-reducer was isolated based on its highest Fe(III)-reduction activity, Bacterial growth was coupled with oxidation of lactate to Fe(III)-reduction, but the isolate fermented pyruvate without Fe(III), The isolate reduced an insoluble ferric iron (FeOOH) as well as a soluble ferric iron (ferric citrate). Using the BBL crystal enteric/non-fermentor identification kit and 16S rDNA sequence analysis, the isolate was identified as Shewanella putrefaciens IR-1.

  • PDF