Browse > Article
http://dx.doi.org/10.7857/JSGE.2011.16.6.058

Influence of Iron Phases on Microbial U(VI) Reduction  

Lee, Seung-Yeop (Division of Radwaste Disposal Research, Korea Atomic Energy Research Institute)
Baik, Min-Hoon (Division of Radwaste Disposal Research, Korea Atomic Energy Research Institute)
Lee, Min-Hee (Department of Earth Environmental Geosciences, Pukyong National University)
Lee, Young-Boo (Jeonju Center, Korea Basic Science Institute)
Lee, Yong-Jae (Department of Earth System Sciences, Yonsei University)
Publication Information
Journal of Soil and Groundwater Environment / v.16, no.6, 2011 , pp. 58-65 More about this Journal
Abstract
The bacterial uranium(VI) reduction and its resultant low solubility make this process an attractive option for removing U from groundwater. An impact of aqueous suspending iron phase, which is redox sensitive and ubiquitous in subsurface groundwater, on the U(VI) bioreduction by Shewanella putrefaciens CN32 was investigated. In our batch experiment, the U(VI) concentration ($5{\times}10^5M$) gradually decreased to a non-detectable level during the microbial respiration. However, when Fe(III) phase was suspended in solution, bioreduction of U(VI) was significantly suppressed due to a preferred reduction of Fe(III) instead of U(VI). This shows that the suspending amorphous Fe(III) phase can be a strong inhibitor to the U(VI) bioreduction. On the contrary, when iron was present as a soluble Fe(II) in the solution, the U(VI) removal was largely enhanced. The microbially-catalyzed U(VI) reduction resulted in an accumulation of solid-type U particles in and around the cells. Electron elemental investigations for the precipitates show that some background cations such as Ca and P were favorably coprecipitated with U. This implies that aqueous U tends to be stabilized by complexing with Ca or P ions, which easily diffuse and coprecipitate with U in and around the microbial cell.
Keywords
Uranium(VI) bioreduction; Shewanella putrefaciens; Iron-reducing bacterium; HRTEM; Iron;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Duff, M.C., Gorby, Y.A., Li, S.M.W., and Krupka, K.M., 2000, Reduction of U(VI) in goethite (alpha-FeOOH) suspensions by a dissimilatory metal-reducing bacterium, Geochim. Cosmochim. Acta, 64, 3085-3098.   DOI   ScienceOn
2 Haas, J.R., Dichristina, T.J., and Wade, R., 2001, Thermodynamics of U(VI) sorption onto Shewanella putrefaciens, Chem. Geol., 180, 33-54.   DOI
3 Ilton, E.S., Haiduc, A., Moses, C.O., Heald, S.M., Elbert, D.C., and Veblen, D.R., 2004, Heterogeneous reduction of uranyl by micas: crystal chemical and solution controls, Geochim. Cosmochim. Acta, 68, 2417-2435.   DOI   ScienceOn
4 Istok, J.D., Senko, J.M., Krumholz, L.R., Watson, D., Bogle, M.A., Peacock, A., Chang, Y.J., and White, D.C., 2004, In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer, Environ. Sci. Technol., 38, 468-475.   DOI   ScienceOn
5 Janeczek, J. and Ewing, R.C., 1992, Structural formula of uraninite, J. Nucl. Mater., 190, 128-132.   DOI
6 Abdelouas, A., Lu, Y., Lutze, W., and Nuttall, H.E., 1998, Reduction of U(VI) to U(IV) by indigenous bacteria in contaminated ground water, J. Contamin. Hydrol., 35, 217-233.   DOI   ScienceOn
7 Bargar, J.R., Bernier-Latmani, R., Giammar, D.E., and Tebo, B.M., 2008a, Biogenic uraninite nanoparticles and their importance for uranium remediation, Elements, 4, 407-412.   DOI   ScienceOn
8 Bargar, J.R., Bernier-Latmani, R., Giammar, D.E., and Tebo, B.M., 2008b, Coupled biogeochemical processes governing the stability of bacteriogenic $UO_2$: molecular to meter scales, 3rd Annual DOE-ERSP PI Meeting, Lansdowne, Virginia.
9 Beveridge, T.J., 1989, Role of cellular design in bacterial metal accumulation and mineralization, Ann. Rev. Microbiol., 43, 147- 171.   DOI   ScienceOn
10 Bonneville, S., Cappellen, P.V., and Behrends, T., 2004, Microbial reduction of iron(III) oxyhydroxides: effects of mineral solubility and availability, Chem. Geol., 212, 255-268.   DOI
11 Brooks, S.C., Fredrickson, J.K., Carroll, S.L., Kennedy, D.W., Zachara, J.M., Plymale, A.E., Kelly, S.D., Kemner, K.M., and Fendorf, S., 2003, Inhibition of bacterial U(VI) reduction by calcium, Environ. Sci. Technol., 37, 1850-1858.   DOI
12 Burgos, W.D., McDonough, J.T., Senko, J.M., Zhang, G., Dohnalkova, A.C., Kelly, S.D., Gorby, Y., and Kemner, K.M., 2008, Characterization of uraninite nanoparticles produced by Shewanella oneidensis MR-1, Geochim. Cosmochim. Acta, 72, 4901-4915.   DOI   ScienceOn
13 Truex, M.J., Peyton, B.M., Valentine, N.B., and Gorby, Y.A., 1997, Kinetics of U(VI) reduction by a dissimilatory Fe(III)- reducing bacterium under non-growth conditions, Biotechnol. Bioeng., 555, 490-496.
14 Roden, E.E. and Zachara, J.M., 1996, Microbial reduction of crystalline Fe(III) oxides: Influence of oxide surface area and potential for cell growth, Environ. Sci. Technol., 30, 1618-1628.   DOI   ScienceOn
15 Roh, Y., Chon, C.M., and Moon, J.W., 2007, Metal reduction and biomineralization by an alkaliphilic metal-reducing bacterium, Alkaliphilus metalliredigens (QYMF), Geosci. J., 11, 415- 423.   DOI   ScienceOn
16 Schwertmann, U. and Cornell, R.M., 2000, Iron Oxides in the Laboratory: Preparation and Characterization, 2nd ed., Wiley- VCH Verlag GmbH, Weinheim, 188 p.
17 Urrutia, M.N., Roden, E.E., Fredrickson, J.K., and Zachara, J.M., 1998, Microbial and surface chemistry controls on reduction of synthetic Fe(III) oxide minerals by the dissimilatory ironreducing bacterium Shewanella alga, Geomicrobiol., 15, 269- 291.   DOI   ScienceOn
18 Walker, S.G., Fleming, C.A., Ferris, F.G., Beveridge, T.J., and Bailey, G.W., 1989, Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution, Appl. Environ. Microbiol., 55, 2976-2984.
19 Wall, J.D. and Krumholz, L.R., 2006, Uranium reduction, Ann. Rev. Microbiol., 60, 149-166.   DOI   ScienceOn
20 Warren, L.A. and Ferris, F.G., 1998, Continuum between sorption and precipitation of Fe(III) on microbial surfaces, Environ. Sci. Technol., 32, 2331-2337.   DOI   ScienceOn
21 Wielinga, B., Bostick, B., Hansel, C.M., Rosenzweig, R.F., and Fendorf, S., 2000, Inhibition of bacterially promoted uranium reduction: Ferric (hyro)oxides as competitive electron acceptors, Environ. Sci. Technol., 34, 2190-2192.   DOI   ScienceOn
22 Konhauser, K.O., 1998, Diversity of bacterial iron mineralization, Earth Sci. Rev., 43, 91-121.   DOI   ScienceOn
23 Zachara, J.M., Fredrickson, J.K., Li, S.W., Kennedy, D.W., Smith, S.C., and Gassman, P.L., 1998, Bacterial reduction of crystalline $Fe^{3+}$ oxides in single phase suspensions and subsurface materials, Am. Mineral., 83, 1426-1443.   DOI
24 Kawano, M. and Tomita, K., 2001, Microbial biomineralization in weathered volcanic ash deposit and formation of biogenic minerals by experimental incubation, Am. Mineral., 86, 400- 410.   DOI
25 Komlos, J., Peacock, A., Kukkadapu, R.K., and Jaffe, P.R., 2008, Long-term dynamics of uranium reduction/reoxidation under low sulfate conditions, Geochim. Cosmochim. Acta, 72, 3603-3615.   DOI   ScienceOn
26 Kostka, J.E. and Nealson, K.H., 1995, Dissolution and reduction of magnetite by bacteria, Environ. Sci. Technol., 29, 2535- 2540.   DOI   ScienceOn
27 Lee, S.Y., Baik, M.H., Lee, Y.J., and Lee, Y.B., 2009, Adsorption of U(VI) ions on biotite from aqueous solutions, Appl. Clay Sci., 46, 255-259.   DOI   ScienceOn
28 Lee, S.Y., Baik, M.H., and Choi, J.W., 2010, Biogenic formation and growth of uraninite ($UO_2$), Environ. Sci. Technol., 44, 8409-8414.   DOI   ScienceOn
29 Liger, E., Charlet, L., and Van Cappellen, P., 1999, Surface catalysis of uranium(VI) reduction by iron(II), Geochim. Cosmochim. Acta, 63, 2939-2955.   DOI   ScienceOn
30 Liu, C., Zachara, J.M., Gorby, Y.A., Szecsody, J.E., and Brown, C.F., 2001, Microbial reduction of Fe(III) and sorption/precipitation of Fe(II) on Shewanella putrefaciens strain CN32, Environ. Sci. Technol., 35, 1385-1393.   DOI   ScienceOn
31 Lloyd, J.R., Renshaw, J.C., May, I., Livens, F.R., Burke, I.T., Mortimerc, R.J.G., and Morris, K., 2005, Biotransformation of radioactive waste: Microbial reduction of actinides and fission products, J. Nucl. Radiochem. Sci., 6, 17-20.   DOI
32 Payne, R.B., Casalot, L., Rivere, T., Terry, J.H., Larsen, L., Giles, B.J., and Wall, J.D., 2004, Interaction between uranium and the cytochrome c3 of Desulfovibrio desulfuricans strain G20, Arch. Microbiol., 181, 398-406.   DOI   ScienceOn
33 Lovley, D.R., 1991, Dissimilatory Fe(III) and Mn(IV) reduction, Microbiol. Rev., 55, 259-287.
34 Lovley, D.R., Phillips, E.J.P., Gorby, Y.A., and Landa, E.R., 1991, Microbial reduction of uranium, Nature, 350, 413-416.   DOI   ScienceOn
35 Nealson, K. and Saffarini, D., 1994, Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation, Ann. Rev. Microbiol., 48, 311-343.   DOI   ScienceOn
36 Burns, P.C., 1999, The Crystal chemistry of uranium, In: P.C. Burns and R. Finch (eds.), Uranium: Mineralogy, Geochemistry and the Environment, Vol. 38: Reviews in Mineralogy. Mineralogical Society of America.
37 Cochran, J.K., Carey, A.E., Sholkovitz, E.R., and Surprenant, L.D., 1986, The geochemistry of uranium and thorium in coastal marine sediments and sediment pore waters, Geochim. Cosmochim. Acta, 50, 663-680.   DOI   ScienceOn
38 Dong, H., Fredrickson, J.K., Kennedy, D.W., Zachara, J.M., and Onstott, T.C., 2000, Mineral transformations associated with the microbial reduction of magnetite, Chem. Geol., 169, 299-318.   DOI
39 Ehrlich, H.L., 1990, Geomicrobiology, 2th ed., Marcel Dekker, New York, 646 p.
40 Fein, J.B., Daughney, C.J., Yee, N., and Davis, T.A., 1997, A chemical equilibrium model for metal adsorption onto bacterial surfaces, Geochim. Cosmochim. Acta, 61, 3319-3328.   DOI   ScienceOn
41 Ferris, F.G., Fratton, C.M., Gerits, J.P., Schultze-Lam, S., and Sherwood-Lollar, B., 1995, Microbial precipitation of a strontium calcite phase at a groundwater discharge zone near rock Creek, British Columbia, Canada, Geomicrobiol. J., 13, 57-67.   DOI   ScienceOn
42 Fowle, D.A. and Fein, J.B., 2000, Experimental measurements of the reversibility of metal-bacteria adsorption reactions, Chem. Geol., 168, 27-36.   DOI   ScienceOn